import os import cv2 import numpy as np import torch import gradio as gr import spaces from PIL import Image, ImageOps from transformers import AutoModelForImageSegmentation from torchvision import transforms torch.set_float32_matmul_precision('high') torch.jit.script = lambda f: f device = "cuda" if torch.cuda.is_available() else "cpu" def refine_foreground(image, mask, r=90): if mask.size != image.size: mask = mask.resize(image.size) image = np.array(image) / 255.0 mask = np.array(mask) / 255.0 estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) return image_masked def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): alpha = alpha[:, :, None] F, blur_B = FB_blur_fusion_foreground_estimator( image, image, image, alpha, r) return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): if isinstance(image, Image.Image): image = np.array(image) / 255.0 blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] blurred_FA = cv2.blur(F * alpha, (r, r)) blurred_F = blurred_FA / (blurred_alpha + 1e-5) blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) F = blurred_F + alpha * \ (image - alpha * blurred_F - (1 - alpha) * blurred_B) F = np.clip(F, 0, 1) return F, blurred_B class ImagePreprocessor(): def __init__(self, resolution=(1024, 1024)) -> None: self.transform_image = transforms.Compose([ transforms.Resize(resolution), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def proc(self, image: Image.Image) -> torch.Tensor: image = self.transform_image(image) return image birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet-matting', trust_remote_code=True) birefnet.to(device) birefnet.eval() @spaces.GPU def remove_background(image): if image is None: raise gr.Error("Please upload an image.") image_ori = Image.fromarray(image).convert('RGB') original_size = image_ori.size # Preprocess the image image_preprocessor = ImagePreprocessor(resolution=(1024, 1024)) image_proc = image_preprocessor.proc(image_ori) image_proc = image_proc.unsqueeze(0) # Prediction with torch.no_grad(): preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu() pred = preds[0].squeeze() # Process Results pred_pil = transforms.ToPILImage()(pred) pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size # Create reverse mask reverse_mask = Image.new('L', original_size) reverse_mask.paste(ImageOps.invert(pred_pil)) # Create foreground image (object with transparent background) foreground = image_ori.copy() foreground.putalpha(pred_pil) # Create background image background = image_ori.copy() background.putalpha(reverse_mask) torch.cuda.empty_cache() # Save all images mask_path = "mask.png" pred_pil.save(mask_path) reverse_mask_path = "reverse_mask.png" reverse_mask.save(reverse_mask_path) foreground_path = "foreground.png" foreground.save(foreground_path) background_path = "background.png" background.save(background_path) return mask_path, reverse_mask_path, foreground_path, background_path license_text = """ MIT License Copyright (c) 2024 ZhengPeng Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ css = """ body { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; } .gradio-container { background: white; } #component-0 button { font-family: inherit !important; font-size: 16px !important; font-weight: bold !important; color: #000000 !important; background: linear-gradient( 135deg, #e0f7fa, #e8f5e9, #fff9c4, #ffebee, #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6 ) !important; background-size: 400% 400% !important; animation: gradient-animation 15s ease infinite !important; border: 2px solid black !important; border-radius: 10px !important; } #component-0 button:hover { background: linear-gradient( 135deg, #b2ebf2, #c8e6c9, #fff176, #ffcdd2, #e1bee7, #b3e5fc, #ffe0b2, #c5cae9 ) !important; background-size: 400% 400% !important; animation: gradient-animation 15s ease infinite !important; } @keyframes gradient-animation { 0% { background-position: 0% 50%; } 50% { background-position: 100% 50%; } 100% { background-position: 0% 50%; } } footer { text-align: center; margin-top: 20px; } .license-link { color: #007bff; text-decoration: none; cursor: pointer; } .license-link:hover { text-decoration: underline; } .modal { display: none; position: fixed; z-index: 1000; left: 0; top: 0; width: 100%; height: 100%; overflow: auto; background-color: rgba(0,0,0,0.4); } .modal-content { background-color: #fefefe; margin: 15% auto; padding: 20px; border: 1px solid #888; width: 80%; max-width: 600px; } .close { color: #aaa; float: right; font-size: 28px; font-weight: bold; } .close:hover, .close:focus { color: black; text-decoration: none; cursor: pointer; } """ js = """ function setupLicenseModal() { var modal = document.createElement('div'); modal.className = 'modal'; modal.innerHTML = `
`; document.body.appendChild(modal); var link = document.createElement('a'); link.href = '#'; link.className = 'license-link'; link.textContent = 'License'; link.onclick = function(e) { e.preventDefault(); modal.style.display = 'block'; }; var footer = document.createElement('footer'); footer.appendChild(link); document.body.appendChild(footer); var span = modal.querySelector('.close'); span.onclick = function() { modal.style.display = 'none'; }; window.onclick = function(event) { if (event.target == modal) { modal.style.display = 'none'; } }; } if (window.gradio_config.version.startsWith('3')) { setupLicenseModal(); } else { document.addEventListener('DOMContentLoaded', setupLicenseModal); } """ iface = gr.Interface( fn=remove_background, inputs=gr.Image(type="numpy"), outputs=[ gr.Image(type="filepath", label="Mask"), gr.Image(type="filepath", label="Reverse Mask"), gr.Image(type="filepath", label="Foreground"), gr.Image(type="filepath", label="Background") ], allow_flagging="never", css=css, js=js, elem_id="remove-background" ) if __name__ == "__main__": iface.launch(debug=True)