|
from sentence_transformers import SentenceTransformer
|
|
import faiss
|
|
import numpy as np
|
|
|
|
|
|
index = faiss.read_index("database/pdf_sections_index.faiss")
|
|
|
|
|
|
model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
def search_faiss(query, k=3):
|
|
query_vector = model.encode([query])[0].astype('float32')
|
|
query_vector = np.expand_dims(query_vector, axis=0)
|
|
distances, indices = index.search(query_vector, k)
|
|
return distances, indices
|
|
|
|
|
|
query = "What are the main dietary guidelines for protein intake?"
|
|
distances, indices = search_faiss(query)
|
|
|
|
print(f"Query: {query}")
|
|
print(f"Distances: {distances}")
|
|
print(f"Indices: {indices}") |