|
import streamlit as st |
|
from sentence_transformers import SentenceTransformer |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains import LLMChain |
|
from langchain_community.llms import Ollama |
|
import faiss |
|
import numpy as np |
|
import pickle |
|
import requests |
|
import json |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_faiss_index(): |
|
try: |
|
return faiss.read_index("database/pdf_sections_index.faiss") |
|
except FileNotFoundError: |
|
st.error("FAISS index file not found. Please ensure 'pdf_sections_index.faiss' exists.") |
|
st.stop() |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_embedding_model(): |
|
return SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_sections_data(): |
|
try: |
|
with open('database/pdf_sections_data.pkl', 'rb') as f: |
|
return pickle.load(f) |
|
except FileNotFoundError: |
|
st.error("Sections data file not found. Please ensure 'pdf_sections_data.pkl' exists.") |
|
st.stop() |
|
|
|
|
|
index = load_faiss_index() |
|
model = load_embedding_model() |
|
sections_data = load_sections_data() |
|
|
|
def search_faiss(query, k=3): |
|
query_vector = model.encode([query])[0].astype('float32') |
|
query_vector = np.expand_dims(query_vector, axis=0) |
|
distances, indices = index.search(query_vector, k) |
|
|
|
results = [] |
|
for dist, idx in zip(distances[0], indices[0]): |
|
results.append({ |
|
'distance': dist, |
|
'content': sections_data[idx]['content'], |
|
'metadata': sections_data[idx]['metadata'] |
|
}) |
|
|
|
return results |
|
|
|
prompt_template = """ |
|
You are an AI assistant specialized in Mental Health & wellness guidelines. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. |
|
|
|
Context: |
|
{context} |
|
|
|
Question: {question} |
|
|
|
Answer:""" |
|
|
|
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_llm(): |
|
return Ollama(model="phi3") |
|
|
|
llm = load_llm() |
|
chain = LLMChain(llm=llm, prompt=prompt) |
|
|
|
def answer_question(query): |
|
search_results = search_faiss(query) |
|
context = "\n\n".join([result['content'] for result in search_results]) |
|
response = chain.run(context=context, question=query) |
|
return response, context |
|
|
|
|
|
st.title("Mental Health & Wellness Assistant") |
|
|
|
query = st.text_input("Enter your question about Mental Health:") |
|
|
|
if st.button("Get Answer"): |
|
if query: |
|
with st.spinner("Searching, Thinking and generating answer..."): |
|
answer, context = answer_question(query) |
|
st.subheader("Answer:") |
|
st.write(answer) |
|
with st.expander("Show Context"): |
|
st.write(context) |
|
else: |
|
st.warning("Please enter a question.") |
|
|
|
|
|
st.markdown(""" |
|
<div class="social-icons"> |
|
<a href="https://github.com/yadavadit" target="_blank"><img src="https://img.icons8.com/material-outlined/48/e50914/github.png"/></a> |
|
<a href="https://www.linkedin.com/in/yaditi/" target="_blank"><img src="https://img.icons8.com/color/48/e50914/linkedin.png"/></a> |
|
<a href="mailto:[email protected]"><img src="https://img.icons8.com/color/48/e50914/gmail.png"/></a> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|