|
from sentence_transformers import SentenceTransformer |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains import LLMChain |
|
from langchain_community.llms import Ollama |
|
import faiss |
|
import numpy as np |
|
import pickle |
|
|
|
|
|
try: |
|
index = faiss.read_index("database/pdf_sections_index.faiss") |
|
except FileNotFoundError: |
|
print("FAISS index file not found. Please ensure 'pdf_sections_index.faiss' exists.") |
|
exit(1) |
|
|
|
|
|
model = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
|
|
try: |
|
with open('database/pdf_sections_data.pkl', 'rb') as f: |
|
sections_data = pickle.load(f) |
|
except FileNotFoundError: |
|
print("Sections data file not found. Please ensure 'pdf_sections_data.pkl' exists.") |
|
exit(1) |
|
|
|
def search_faiss(query, k=3): |
|
query_vector = model.encode([query])[0].astype('float32') |
|
query_vector = np.expand_dims(query_vector, axis=0) |
|
distances, indices = index.search(query_vector, k) |
|
|
|
results = [] |
|
for dist, idx in zip(distances[0], indices[0]): |
|
results.append({ |
|
'distance': dist, |
|
'content': sections_data[idx]['content'], |
|
'metadata': sections_data[idx]['metadata'] |
|
}) |
|
|
|
return results |
|
|
|
|
|
prompt_template = """ |
|
You are an AI assistant specialized in mental health and wellness guidelines. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. |
|
|
|
Context: |
|
{context} |
|
|
|
Question: {question} |
|
|
|
Answer:""" |
|
|
|
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) |
|
|
|
llm = Ollama( |
|
model="phi3" |
|
) |
|
|
|
|
|
chain = LLMChain(llm=llm, prompt=prompt) |
|
|
|
def answer_question(query): |
|
|
|
search_results = search_faiss(query) |
|
|
|
|
|
context = "\n\n".join([result['content'] for result in search_results]) |
|
|
|
|
|
response = chain.run(context=context, question=query) |
|
|
|
return response |
|
|
|
|
|
query = "What is mental health?" |
|
answer = answer_question(query) |
|
|
|
print(f"Question: {query}") |
|
print(f"Answer: {answer}") |
|
|