from sentence_transformers import SentenceTransformer from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain_community.llms import Ollama import faiss import numpy as np import pickle # Load the FAISS index try: index = faiss.read_index("database/pdf_sections_index.faiss") except FileNotFoundError: print("FAISS index file not found. Please ensure 'pdf_sections_index.faiss' exists.") exit(1) # Load the embedding model model = SentenceTransformer('all-MiniLM-L6-v2') # Load sections data try: with open('database/pdf_sections_data.pkl', 'rb') as f: sections_data = pickle.load(f) except FileNotFoundError: print("Sections data file not found. Please ensure 'pdf_sections_data.pkl' exists.") exit(1) def search_faiss(query, k=3): query_vector = model.encode([query])[0].astype('float32') query_vector = np.expand_dims(query_vector, axis=0) distances, indices = index.search(query_vector, k) results = [] for dist, idx in zip(distances[0], indices[0]): results.append({ 'distance': dist, 'content': sections_data[idx]['content'], 'metadata': sections_data[idx]['metadata'] }) return results # Create a prompt template prompt_template = """ You are an AI assistant specialized in dietary guidelines. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Context: {context} Question: {question} Answer:""" prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) llm = Ollama( model="llama3" ) # Create the chain chain = LLMChain(llm=llm, prompt=prompt) def answer_question(query): # Search for relevant context search_results = search_faiss(query) # Combine the content from the search results context = "\n\n".join([result['content'] for result in search_results]) # Run the chain response = chain.run(context=context, question=query) return response # Example usage query = "What is Mental Health?" answer = answer_question(query) print(f"Question: {query}") print(f"Answer: {answer}")