from sentence_transformers import SentenceTransformer import faiss import numpy as np # Load the FAISS index index = faiss.read_index("database/pdf_sections_index.faiss") # Load the embedding model model = SentenceTransformer('all-MiniLM-L6-v2') def search_faiss(query, k=3): query_vector = model.encode([query])[0].astype('float32') query_vector = np.expand_dims(query_vector, axis=0) distances, indices = index.search(query_vector, k) return distances, indices # Example usage query = "What is mental Health?" distances, indices = search_faiss(query) print(f"Query: {query}") print(f"Distances: {distances}") print(f"Indices: {indices}")