File size: 1,384 Bytes
7dec2bb
fc286f6
 
 
7dec2bb
 
fc286f6
7dec2bb
 
fc286f6
 
7dec2bb
 
fc286f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
title: Multi-Modal for Emotion and Sentiment Analysis (MMESA)
emoji: 😀😲😐😥🥴😱😡
colorFrom: blue
colorTo: pink
sdk: gradio
sdk_version: 4.24.0
app_file: app.py
pinned: false
license: mit
short_description: A tool to detect Stress, Anxiety and Depression
---

## Technologies

This project utilizes various Python scripts for different aspects of analysis and recognition:

- `blink_detection.py`: Detects and analyzes blinking patterns.
- `body_movement_analysis.py`: Analyzes body movements.
- `emotion_analysis.py`: Analyzes emotional states.
- `face_expressions.py`: Recognizes facial expressions.
- `FACS_analysis_sad.py`: Performs Facial Action Coding System analysis for sadness.
- `gaze_estimation.py`: Estimates gaze direction.
- `head_posture_detection.py`: Detects head posture.
- `heart_rate_variability.py`: Analyzes heart rate variability.
- `posture_analysis.py`: Analyzes posture.
- `roberta_chatbot.py`: Chatbot using the RoBERTa model.
- `sentiment_analysis.py`: Performs sentiment analysis.
- `skin_analysis.py`: Analyzes skin conditions.
- `sleep_quality.py`: Evaluates sleep quality.
- `speech_emotion_recognition.py`: Recognizes emotions from speech.
- `speech_stress_analysis.py`: Analyzes stress levels from speech.

These scripts combine to provide comprehensive analysis capabilities for various aspects of human behavior and physiology.