Spaces:
Runtime error
Runtime error
File size: 12,863 Bytes
fc286f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
"""
File: app_utils.py
Author: Elena Ryumina and Dmitry Ryumin (modified by Assistant)
Description: This module contains utility functions for facial expression recognition application, including FACS Analysis for SAD.
License: MIT License
"""
import torch
import numpy as np
import mediapipe as mp
from PIL import Image
import cv2
from pytorch_grad_cam.utils.image import show_cam_on_image
import matplotlib.pyplot as plt
# Importing necessary components for the Gradio app
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
from app.face_utils import get_box, display_info
from app.config import DICT_EMO, config_data
from app.plot import statistics_plot
mp_face_mesh = mp.solutions.face_mesh
def preprocess_image_and_predict(inp):
inp = np.array(inp)
if inp is None:
return None, None, None
try:
h, w = inp.shape[:2]
except Exception:
return None, None, None
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
) as face_mesh:
results = face_mesh.process(inp)
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = inp[startY:endY, startX:endX]
cur_face_n = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
prediction = (
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
.detach()
.numpy()[0]
)
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
grayscale_cam = cam(input_tensor=cur_face_n)
grayscale_cam = grayscale_cam[0, :]
cur_face_hm = cv2.resize(cur_face,(224,224))
cur_face_hm = np.float32(cur_face_hm) / 255
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
return cur_face, heatmap, confidences
def preprocess_frame_and_predict_aus(frame):
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
) as face_mesh:
results = face_mesh.process(frame)
if results.multi_face_landmarks:
h, w = frame.shape[:2]
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame[startY:endY, startX:endX]
cur_face_n = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
features = pth_model_static(cur_face_n)
au_intensities = features_to_au_intensities(features)
grayscale_cam = cam(input_tensor=cur_face_n)
grayscale_cam = grayscale_cam[0, :]
cur_face_hm = cv2.resize(cur_face, (224, 224))
cur_face_hm = np.float32(cur_face_hm) / 255
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
return cur_face, au_intensities, heatmap
return None, None, None
def features_to_au_intensities(features):
features_np = features.detach().cpu().numpy()[0]
au_intensities = (features_np - features_np.min()) / (features_np.max() - features_np.min())
return au_intensities[:24] # Assuming we want 24 AUs
def preprocess_video_and_predict(video):
cap = cv2.VideoCapture(video)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
path_save_video_face = 'result_face.mp4'
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
path_save_video_hm = 'result_hm.mp4'
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
lstm_features = []
count_frame = 1
count_face = 0
probs = []
frames = []
au_intensities_list = []
last_output = None
last_heatmap = None
last_au_intensities = None
cur_face = None
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
_, frame = cap.read()
if frame is None: break
frame_copy = frame.copy()
frame_copy.flags.writeable = False
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_copy)
frame_copy.flags.writeable = True
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_copy[startY:endY, startX: endX]
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
cur_face_copy = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
au_intensities = features_to_au_intensities(pth_model_static(cur_face_copy))
grayscale_cam = cam(input_tensor=cur_face_copy)
grayscale_cam = grayscale_cam[0, :]
cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
cur_face_hm = np.float32(cur_face_hm) / 255
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
last_heatmap = heatmap
last_au_intensities = au_intensities
if len(lstm_features) == 0:
lstm_features = [features]*10
else:
lstm_features = lstm_features[1:] + [features]
lstm_f = torch.from_numpy(np.vstack(lstm_features))
lstm_f = torch.unsqueeze(lstm_f, 0)
with torch.no_grad():
output = pth_model_dynamic(lstm_f).detach().numpy()
last_output = output
if count_face == 0:
count_face += 1
else:
if last_output is not None:
output = last_output
heatmap = last_heatmap
au_intensities = last_au_intensities
elif last_output is None:
output = np.empty((1, 7))
output[:] = np.nan
au_intensities = np.empty(24)
au_intensities[:] = np.nan
probs.append(output[0])
frames.append(count_frame)
au_intensities_list.append(au_intensities)
else:
if last_output is not None:
lstm_features = []
empty = np.empty((7))
empty[:] = np.nan
probs.append(empty)
frames.append(count_frame)
au_intensities_list.append(np.full(24, np.nan))
if cur_face is not None:
heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
vid_writer_face.write(cur_face)
vid_writer_hm.write(heatmap_f)
count_frame += 1
if count_face != 0:
count_face += 1
vid_writer_face.release()
vid_writer_hm.release()
stat = statistics_plot(frames, probs)
au_stat = au_statistics_plot(frames, au_intensities_list)
if not stat or not au_stat:
return None, None, None, None, None
return video, path_save_video_face, path_save_video_hm, stat, au_stat
def au_statistics_plot(frames, au_intensities_list):
fig, ax = plt.subplots(figsize=(12, 6))
au_intensities_array = np.array(au_intensities_list)
for i in range(au_intensities_array.shape[1]):
ax.plot(frames, au_intensities_array[:, i], label=f'AU{i+1}')
ax.set_xlabel('Frame')
ax.set_ylabel('AU Intensity')
ax.set_title('Action Unit Intensities Over Time')
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
return fig
def preprocess_video_and_predict_sleep_quality(video):
cap = cv2.VideoCapture(video)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
path_save_video_original = 'result_original.mp4'
path_save_video_face = 'result_face.mp4'
path_save_video_sleep = 'result_sleep.mp4'
vid_writer_original = cv2.VideoWriter(path_save_video_original, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
vid_writer_sleep = cv2.VideoWriter(path_save_video_sleep, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
frames = []
sleep_quality_scores = []
eye_bags_images = []
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_rgb)
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_rgb[startY:endY, startX:endX]
sleep_quality_score, eye_bags_image = analyze_sleep_quality(cur_face)
sleep_quality_scores.append(sleep_quality_score)
eye_bags_images.append(cv2.resize(eye_bags_image, (224, 224)))
sleep_quality_viz = create_sleep_quality_visualization(cur_face, sleep_quality_score)
cur_face = cv2.resize(cur_face, (224, 224))
vid_writer_face.write(cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR))
vid_writer_sleep.write(sleep_quality_viz)
vid_writer_original.write(frame)
frames.append(len(frames) + 1)
cap.release()
vid_writer_original.release()
vid_writer_face.release()
vid_writer_sleep.release()
sleep_stat = sleep_quality_statistics_plot(frames, sleep_quality_scores)
if eye_bags_images:
average_eye_bags_image = np.mean(np.array(eye_bags_images), axis=0).astype(np.uint8)
else:
average_eye_bags_image = np.zeros((224, 224, 3), dtype=np.uint8)
return (path_save_video_original, path_save_video_face, path_save_video_sleep,
average_eye_bags_image, sleep_stat)
def analyze_sleep_quality(face_image):
# Placeholder function - implement your sleep quality analysis here
sleep_quality_score = np.random.random()
eye_bags_image = cv2.resize(face_image, (224, 224))
return sleep_quality_score, eye_bags_image
def create_sleep_quality_visualization(face_image, sleep_quality_score):
viz = face_image.copy()
cv2.putText(viz, f"Sleep Quality: {sleep_quality_score:.2f}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return cv2.cvtColor(viz, cv2.COLOR_RGB2BGR)
def sleep_quality_statistics_plot(frames, sleep_quality_scores):
# Placeholder function - implement your statistics plotting here
fig, ax = plt.subplots()
ax.plot(frames, sleep_quality_scores)
ax.set_xlabel('Frame')
ax.set_ylabel('Sleep Quality Score')
ax.set_title('Sleep Quality Over Time')
return fig |