File size: 5,419 Bytes
fc286f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import cv2
import numpy as np
import torch
from PIL import Image
import mediapipe as mp
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
from app.face_utils import get_box, display_info
from app.config import config_data
from app.plot import statistics_plot
from .au_processing import features_to_au_intensities, au_statistics_plot

mp_face_mesh = mp.solutions.face_mesh

def preprocess_video_and_predict(video):
    cap = cv2.VideoCapture(video)
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = np.round(cap.get(cv2.CAP_PROP_FPS))

    path_save_video_face = 'result_face.mp4'
    vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    path_save_video_hm = 'result_hm.mp4'
    vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    lstm_features = []
    count_frame = 1
    count_face = 0
    probs = []
    frames = []
    au_intensities_list = []
    last_output = None
    last_heatmap = None 
    last_au_intensities = None
    cur_face = None

    with mp_face_mesh.FaceMesh(
    max_num_faces=1,
    refine_landmarks=False,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5) as face_mesh:

        while cap.isOpened():
            _, frame = cap.read()
            if frame is None: break

            frame_copy = frame.copy()
            frame_copy.flags.writeable = False
            frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
            results = face_mesh.process(frame_copy)
            frame_copy.flags.writeable = True

            if results.multi_face_landmarks:
                for fl in results.multi_face_landmarks:
                    startX, startY, endX, endY  = get_box(fl, w, h)
                    cur_face = frame_copy[startY:endY, startX: endX]

                    if count_face%config_data.FRAME_DOWNSAMPLING == 0:
                        cur_face_copy = pth_processing(Image.fromarray(cur_face))
                        with torch.no_grad():
                            features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
                            au_intensities = features_to_au_intensities(pth_model_static(cur_face_copy))

                        grayscale_cam = cam(input_tensor=cur_face_copy)
                        grayscale_cam = grayscale_cam[0, :]
                        cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
                        cur_face_hm = np.float32(cur_face_hm) / 255
                        heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
                        last_heatmap = heatmap
                        last_au_intensities = au_intensities
        
                        if len(lstm_features) == 0:
                            lstm_features = [features]*10
                        else:
                            lstm_features = lstm_features[1:] + [features]

                        lstm_f = torch.from_numpy(np.vstack(lstm_features))
                        lstm_f = torch.unsqueeze(lstm_f, 0)
                        with torch.no_grad():
                            output = pth_model_dynamic(lstm_f).detach().numpy()
                        last_output = output

                        if count_face == 0:
                            count_face += 1

                    else:
                        if last_output is not None:
                            output = last_output
                            heatmap = last_heatmap
                            au_intensities = last_au_intensities

                        elif last_output is None:
                            output = np.empty((1, 7))
                            output[:] = np.nan
                            au_intensities = np.empty(24)
                            au_intensities[:] = np.nan
                            
                    probs.append(output[0])
                    frames.append(count_frame)
                    au_intensities_list.append(au_intensities)
            else:
                if last_output is not None:
                    lstm_features = []
                    empty = np.empty((7))
                    empty[:] = np.nan
                    probs.append(empty)
                    frames.append(count_frame)
                    au_intensities_list.append(np.full(24, np.nan))

            if cur_face is not None:
                heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)

                cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
                cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
                cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
                vid_writer_face.write(cur_face)
                vid_writer_hm.write(heatmap_f)

            count_frame += 1
            if count_face != 0:
                count_face += 1

        vid_writer_face.release()
        vid_writer_hm.release()

        stat = statistics_plot(frames, probs)
        au_stat = au_statistics_plot(frames, au_intensities_list)

        if not stat or not au_stat:
            return None, None, None, None, None
        
    return video, path_save_video_face, path_save_video_hm, stat, au_stat