Depreesion / tabs /speech_emotion_recognition.py
vitorcalvi's picture
pre-launch
fc286f6
import gradio as gr
import numpy as np
import librosa
import librosa.display
import matplotlib.pyplot as plt
from transformers import pipeline
emotion_model = pipeline("audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
transcription_model = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
emotion_mapping = {
"angry": (0.8, 0.8, -0.5), "happy": (0.6, 0.6, 0.8), "sad": (-0.6, -0.4, -0.6),
"neutral": (0, 0, 0), "fear": (0.3, -0.3, -0.7), "surprise": (0.4, 0.2, 0.2),
"disgust": (0.2, 0.5, -0.6), "calm": (-0.2, 0.1, 0.3), "excited": (0.7, 0.5, 0.7),
"frustrated": (0.6, 0.5, -0.4)
}
def process_audio(audio_file):
y, sr = librosa.load(audio_file, sr=None)
transcription = transcription_model(audio_file)["text"]
emotion_result = emotion_model(audio_file)[0]
emotion, confidence = emotion_result["label"], emotion_result["score"]
arousal, dominance, valence = emotion_mapping.get(emotion.lower(), (0, 0, 0))
plt.figure(figsize=(10, 4))
librosa.display.waveshow(y, sr=sr)
plt.title("Waveform")
waveform_plot = plt.gcf()
plt.close()
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
plt.figure(figsize=(10, 4))
librosa.display.specshow(librosa.power_to_db(mel_spec, ref=np.max), sr=sr, x_axis='time', y_axis='mel')
plt.colorbar(format='%+2.0f dB')
plt.title("Mel Spectrogram")
mel_spec_plot = plt.gcf()
plt.close()
return transcription, emotion, confidence, arousal, dominance, valence, waveform_plot, mel_spec_plot
def create_emotion_recognition_tab():
with gr.Row():
with gr.Column(scale=2):
audio_input = gr.Audio(type="filepath")
gr.Examples(["./assets/audio/fitness.wav"], inputs=[audio_input])
transcription_output = gr.Textbox(label="Transcription")
emotion_output = gr.Textbox(label="Emotion")
with gr.Column(scale=1):
outputs = [gr.Number(label=label) for label in ["Confidence", "Arousal", "Dominance", "Valence"]]
with gr.Column(scale=1):
plots = [gr.Plot(label=label) for label in ["Waveform", "Mel Spectrogram"]]
audio_input.change(process_audio, inputs=[audio_input],
outputs=[transcription_output, emotion_output] + outputs + plots)