import os import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import gradio as gr os.environ["TOKENIZERS_PARALLELISM"] = "true" sentiment_tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") sentiment_model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") sentiment_labels = ["very negative", "negative", "neutral", "positive", "very positive"] def analyze_sentiment(text): try: inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) outputs = sentiment_model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=-1) max_prob, max_index = torch.max(probs, dim=1) return sentiment_labels[max_index.item()], f"{max_prob.item():.4f}" except Exception as e: print(f"Error in sentiment analysis: {e}") return "Error", "N/A" def create_sentiment_tab(): with gr.Row(): with gr.Column(scale=2): input_text = gr.Textbox(value="I actually speak to the expets myself to give you the best value you can get", lines=5, placeholder="Enter text here...", label="Input Text") with gr.Row(): clear_btn = gr.Button("Clear", scale=1) submit_btn = gr.Button("Analyze", scale=1, elem_classes="submit") with gr.Column(scale=1): output_sentiment = gr.Textbox(label="Detected Sentiment") output_confidence = gr.Textbox(label="Sentiment Confidence Score") submit_btn.click(analyze_sentiment, inputs=[input_text], outputs=[output_sentiment, output_confidence], queue=True) clear_btn.click(lambda: ("", "", ""), outputs=[input_text, output_sentiment, output_confidence], queue=True) gr.Examples(["I am so happy today!", "I feel terrible and sad.", "This is a neutral statement."], inputs=[input_text])