import tempfile import cv2 import dlib import numpy as np from scipy.spatial import distance as dist from imutils import face_utils import gradio as gr def detect_eye_movements(video_path): detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("assets/models/shape_predictor_68_face_landmarks.dat") cap = cv2.VideoCapture(video_path) frame_width, frame_height = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) with tempfile.NamedTemporaryFile(delete=False, suffix='.avi') as temp_file: out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'XVID'), 20.0, (frame_width, frame_height)) gaze_points = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) for rect in detector(gray, 0): shape = face_utils.shape_to_np(predictor(gray, rect)) for eye in [shape[36:42], shape[42:48]]: eye_center = eye.mean(axis=0).astype("int") gaze_points.append(eye_center) cv2.circle(frame, tuple(eye_center), 3, (0, 255, 0), -1) out.write(frame) cap.release() out.release() fixed_threshold = 10 fixed_gaze_count = sum(dist.euclidean(gaze_points[i-1], gaze_points[i]) < fixed_threshold for i in range(1, len(gaze_points))) gaze_type = "Fixed Gaze" if fixed_gaze_count > len(gaze_points) // 2 else "Scattered Gaze" return temp_file.name, gaze_type def create_gaze_estimation_tab(): with gr.Row(): with gr.Column(scale=1): input_video = gr.Video(label="Input Video") with gr.Row(): clear_btn = gr.Button("Clear") submit_btn = gr.Button("Analyze", elem_classes="submit") with gr.Column(scale=1, elem_classes="dl4"): output_video = gr.Video(label="Processed Video", elem_classes="video2") output_gaze_type = gr.Label(label="Gaze Type") submit_btn.click(detect_eye_movements, inputs=input_video, outputs=[output_video, output_gaze_type], queue=True) clear_btn.click(lambda: (None, None, None), outputs=[input_video, output_video, output_gaze_type], queue=True) gr.Examples(["./assets/videos/fitness.mp4"], inputs=[input_video])