import tempfile import cv2 import dlib import numpy as np from scipy.spatial import distance as dist from imutils import face_utils import gradio as gr def detect_head_posture(video_path): detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("assets/models/shape_predictor_68_face_landmarks.dat") cap = cv2.VideoCapture(video_path) frame_width, frame_height = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) with tempfile.NamedTemporaryFile(delete=False, suffix='.avi') as temp_file: out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'XVID'), 20.0, (frame_width, frame_height)) posture_data = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) for rect in detector(gray, 0): shape = face_utils.shape_to_np(predictor(gray, rect)) jaw_width = dist.euclidean(shape[1], shape[15]) jaw_height = dist.euclidean(shape[8], (shape[1] + shape[15]) / 2) posture = "Upright" if jaw_height / jaw_width > 0.5 else "Slumped" posture_data.append(posture) for (x, y) in shape: cv2.circle(frame, (x, y), 1, (0, 255, 0), -1) out.write(frame) cap.release() out.release() posture_type = max(set(posture_data), key=posture_data.count) return temp_file.name, posture_type def create_head_posture_tab(): with gr.Row(): with gr.Column(scale=1): input_video = gr.Video(label="Input Video") with gr.Row(): clear_btn = gr.Button("Clear") submit_btn = gr.Button("Analyze", elem_classes="submit") with gr.Column(scale=1, elem_classes="dl4"): output_video = gr.Video(label="Processed Video", elem_classes="video2") output_posture = gr.Label(label="Posture Type") submit_btn.click(detect_head_posture, inputs=input_video, outputs=[output_video, output_posture], queue=True) clear_btn.click(lambda: (None, None, None), outputs=[input_video, output_video, output_posture], queue=True) gr.Examples(["./assets/videos/fitness.mp4"], inputs=[input_video])