import gradio as gr import cv2 import numpy as np import tempfile import os def analyze_posture(video): with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file: video_path = video if isinstance(video, str) else temp_file.name if not isinstance(video, str): temp_file.write(video) cap = cv2.VideoCapture(video_path) if not cap.isOpened(): return "Error: Unable to open video file." posture_score = frame_count = 0 while True: ret, frame = cap.read() if not ret: break left_half = frame[:, :frame.shape[1]//2] right_half = cv2.flip(frame[:, frame.shape[1]//2:], 1) posture_score += np.sum(cv2.absdiff(left_half, right_half)) frame_count += 1 cap.release() if not isinstance(video, str): os.unlink(video_path) avg_posture_score = posture_score / frame_count if frame_count > 0 else 0 posture_quality = "Good" if avg_posture_score < 1000000 else "Fair" if avg_posture_score < 2000000 else "Poor" return f"Posture quality: {posture_quality}\nAverage posture score: {avg_posture_score:.2f}" def create_posture_analysis_tab(): with gr.Column(): video_input = gr.Video() analyze_button = gr.Button("Analyze") output = gr.Textbox(label="Analysis Results") analyze_button.click(analyze_posture, inputs=video_input, outputs=output) # Add examples gr.Examples( examples=["./assets/videos/fitness.mp4"], inputs=video_input )