Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,63 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
6 |
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
|
7 |
rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
st.write(f"Answer: {response[0]}")
|
21 |
else:
|
22 |
-
st.write("Please enter
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import faiss
|
5 |
+
import torch
|
6 |
|
7 |
+
# Title of the Streamlit app
|
8 |
+
st.title("Mental Health Chatbot")
|
9 |
+
|
10 |
+
# Load a pre-trained sentence transformer model for embedding
|
11 |
+
st.write("Loading models... Please wait.")
|
12 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
13 |
+
|
14 |
+
# Load the RAG model, tokenizer, and retriever
|
15 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
16 |
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
|
17 |
rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
|
18 |
|
19 |
+
# Sample dialogues related to mental health (replace with actual dataset for production)
|
20 |
+
sample_dialogues = [
|
21 |
+
"I'm feeling really down lately and don't know what to do.",
|
22 |
+
"I just lost my job, and I'm worried about the future.",
|
23 |
+
"I'm having trouble sleeping and feeling anxious all the time.",
|
24 |
+
"I've been feeling isolated and lonely.",
|
25 |
+
"I don't have the energy to do anything, and it's affecting my work."
|
26 |
+
]
|
27 |
+
|
28 |
+
# Embed the sample dialogues using the sentence transformer model
|
29 |
+
embeddings = sentence_model.encode(sample_dialogues, convert_to_tensor=True)
|
30 |
+
|
31 |
+
# Build FAISS index
|
32 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
33 |
+
index.add(embeddings.cpu().numpy())
|
34 |
+
|
35 |
+
# User input
|
36 |
+
user_input = st.text_input("How are you feeling today?")
|
37 |
+
|
38 |
+
# Define response generation function
|
39 |
+
def generate_response(query):
|
40 |
+
# Embed the query using the sentence transformer
|
41 |
+
query_embedding = sentence_model.encode(query, convert_to_tensor=True).cpu().numpy()
|
42 |
+
|
43 |
+
# Search for the closest dialogue in the index
|
44 |
+
D, I = index.search(query_embedding, k=1)
|
45 |
+
|
46 |
+
# Retrieve the closest dialogue
|
47 |
+
closest_dialogue = sample_dialogues[I[0][0]]
|
48 |
|
49 |
+
# Generate response using RAG model
|
50 |
+
inputs = tokenizer(closest_dialogue, return_tensors="pt")
|
51 |
+
outputs = rag_model.generate(**inputs)
|
52 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
53 |
+
|
54 |
+
return response[0]
|
55 |
|
56 |
+
# Generate a response when the user submits input
|
57 |
+
if st.button("Talk to the Chatbot"):
|
58 |
+
if user_input:
|
59 |
+
with st.spinner('Generating response...'):
|
60 |
+
response = generate_response(user_input)
|
61 |
+
st.write(f"Chatbot: {response}")
|
|
|
62 |
else:
|
63 |
+
st.write("Please enter something for the chatbot to respond to.")
|