import json import gradio as gr import yolov5 from PIL import Image from huggingface_hub import hf_hub_download app_title = "Garbage Object Detection" models_ids = ['keremberke/yolov5n-garbage', 'keremberke/yolov5s-garbage', 'keremberke/yolov5m-garbage'] article = f"

model | dataset | awesome-yolov5-models

" current_model_id = models_ids[-1] model = yolov5.load(current_model_id) examples = [['test_images/biodegradable26_jpg.rf.8a913791d009e2fab0a2e6fe09354e42.jpg', 0.25, 'keremberke/yolov5m-garbage'], ['test_images/biodegradable545_jpg.rf.221b16c94387b66692f4e25e3c67c662.jpg', 0.25, 'keremberke/yolov5m-garbage'], ['test_images/biodegradable89_jpg.rf.2097a8a4f14b2d8e7ac994ed5fdc13a9.jpg', 0.25, 'keremberke/yolov5m-garbage'], ['test_images/cardboard1696_jpg.rf.c7d8edf6d266cb501f877f5d129ca32a.jpg', 0.25, 'keremberke/yolov5m-garbage'], ['test_images/glass1467_jpg.rf.d2f0a3ed76205c01fc26c555680ddc81.jpg', 0.25, 'keremberke/yolov5m-garbage'], ['test_images/glass887_jpg.rf.8993139c864267e74f501703b5a02a1b.jpg', 0.25, 'keremberke/yolov5m-garbage']] def predict(image, threshold=0.25, model_id=None): # update model if required global current_model_id global model if model_id != current_model_id: model = yolov5.load(model_id) current_model_id = model_id # get model input size config_path = hf_hub_download(repo_id=model_id, filename="config.json") with open(config_path, "r") as f: config = json.load(f) input_size = config["input_size"] # perform inference model.conf = threshold results = model(image, size=input_size) numpy_image = results.render()[0] output_image = Image.fromarray(numpy_image) # I have to parse this on my ESP32, so I don't need to display the image (which will increase the packet's size and reduce processing speed) #return (output_image, results.pandas().xyxy[0].to_json(orient='records')) return results.pandas().xyxy[0].to_json(orient='records') gr.Interface( title=app_title, description="Created by 'keremberke'", article=article, fn=predict, inputs=[ gr.Image(type="pil"), gr.Slider(maximum=1, step=0.01, value=0.25), gr.Dropdown(models_ids, value=models_ids[-1]), ], outputs=[ #gr.Image(type="pil"), gr.outputs.Textbox(label="JSON"), ], examples=examples, cache_examples=True if examples else False, ).launch(enable_queue=True)