File size: 6,902 Bytes
f9e8962 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import pickle
import langchain
import faiss
from langchain import HuggingFaceHub
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceHubEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.cache import InMemoryCache
langchain.llm_cache = InMemoryCache()
global model_name
models = ["GPT-3.5", "Flan UL2", "GPT-4", "Flan T5"]
pickle_file = "_vs.pkl"
index_file = "_vs.index"
models_folder = "models/"
llm = ChatOpenAI(model_name="gpt-4", temperature=0.1)
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
chat_history = []
memory = ConversationBufferWindowMemory(memory_key="chat_history", k=10)
vectorstore_index = None
system_template = """You are Coursera QA Bot. Have a conversation with a human, answering the following questions as best you can.
You are a teaching assistant for a Coursera Course: The 3D Printing Evolution and can answer any question about that using vectorstore or context.
Use the following pieces of context to answer the users question.
----------------
{context}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
def set_model_and_embeddings(model):
global chat_history
set_model(model)
# set_embeddings(model)
chat_history = []
def set_model(model):
global llm
print("Setting model to " + str(model))
if model == "GPT-3.5":
print("Loading GPT-3.5")
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.1)
elif model == "GPT-4":
print("Loading GPT-4")
llm = ChatOpenAI(model_name="gpt-4", temperature=0.1)
elif model == "Flan UL2":
print("Loading Flan-UL2")
llm = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature": 0.1, "max_new_tokens":500})
elif model == "Flan T5":
print("Loading Flan T5")
llm = HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature": 0.1})
else:
print("Loading GPT-3.5 from else")
llm = ChatOpenAI(model_name="text-davinci-002", temperature=0.1)
def set_embeddings(model):
global embeddings
if model == "GPT-3.5" or model == "GPT-4":
print("Loading OpenAI embeddings")
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
elif model == "Flan UL2" or model == "Flan T5":
print("Loading Hugging Face embeddings")
embeddings = HuggingFaceHubEmbeddings(repo_id="sentence-transformers/all-MiniLM-L6-v2")
def get_search_index(model):
global vectorstore_index
if os.path.isfile(get_file_path(model, pickle_file)) and os.path.isfile(
get_file_path(model, index_file)) and os.path.getsize(get_file_path(model, pickle_file)) > 0:
# Load index from pickle file
with open(get_file_path(model, pickle_file), "rb") as f:
search_index = pickle.load(f)
print("Loaded index")
else:
search_index = create_index(model)
print("Created index")
vectorstore_index = search_index
return search_index
def create_index(model):
source_chunks = create_chunk_documents()
search_index = search_index_from_docs(source_chunks)
faiss.write_index(search_index.index, get_file_path(model, index_file))
# Save index to pickle file
with open(get_file_path(model, pickle_file), "wb") as f:
pickle.dump(search_index, f)
return search_index
def get_file_path(model, file):
# If model is GPT3.5 or GPT4 return models_folder + openai + file else return models_folder + hf + file
if model == "GPT-3.5" or model == "GPT-4":
return models_folder + "openai" + file
else:
return models_folder + "hf" + file
def search_index_from_docs(source_chunks):
# print("source chunks: " + str(len(source_chunks)))
# print("embeddings: " + str(embeddings))
search_index = FAISS.from_documents(source_chunks, embeddings)
return search_index
def get_html_files():
loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
document_list = loader.load()
return document_list
def fetch_data_for_embeddings():
document_list = get_text_files()
document_list.extend(get_html_files())
print("document list: " + str(len(document_list)))
return document_list
def get_text_files():
loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
document_list = loader.load()
return document_list
def create_chunk_documents():
sources = fetch_data_for_embeddings()
splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)
source_chunks = splitter.split_documents(sources)
print("chunks: " + str(len(source_chunks)))
return source_chunks
def get_qa_chain(vectorstore_index):
global llm, model_name
print(llm)
# embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
# compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=gpt_3_5_index.as_retriever())
retriever = vectorstore_index.as_retriever(search_type="similarity_score_threshold",
search_kwargs={"score_threshold": .5})
chain = ConversationalRetrievalChain.from_llm(llm, retriever, return_source_documents=True,
verbose=True, get_chat_history=get_chat_history,
combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
return chain
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human:{human}\nAI:{ai}")
return "\n".join(res)
def generate_answer(question) -> str:
global chat_history, vectorstore_index
chain = get_qa_chain(vectorstore_index)
result = chain(
{"question": question, "chat_history": chat_history, "vectordbkwargs": {"search_distance": 0.6}})
chat_history = [(question, result["answer"])]
sources = []
print(result)
for document in result['source_documents']:
source = document.metadata['source']
sources.append(source.split('/')[-1].split('.')[0])
print(sources)
source = ',\n'.join(set(sources))
return result['answer'] + '\nSOURCES: ' + source
|