File size: 6,902 Bytes
f9e8962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import pickle
import langchain

import faiss
from langchain import HuggingFaceHub
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceHubEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.cache import InMemoryCache

langchain.llm_cache = InMemoryCache()

global model_name

models = ["GPT-3.5", "Flan UL2", "GPT-4", "Flan T5"]

pickle_file = "_vs.pkl"
index_file = "_vs.index"
models_folder = "models/"

llm = ChatOpenAI(model_name="gpt-4", temperature=0.1)

embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')

chat_history = []

memory = ConversationBufferWindowMemory(memory_key="chat_history", k=10)

vectorstore_index = None

system_template = """You are Coursera QA Bot. Have a conversation with a human, answering the following questions as best you can.
You are a teaching assistant for a Coursera Course: The 3D Printing Evolution and can answer any question about that using vectorstore or context.
Use the following pieces of context to answer the users question. 
----------------
{context}"""

messages = [
    SystemMessagePromptTemplate.from_template(system_template),
    HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)


def set_model_and_embeddings(model):
    global chat_history
    set_model(model)
    # set_embeddings(model)
    chat_history = []


def set_model(model):
    global llm
    print("Setting model to " + str(model))
    if model == "GPT-3.5":
        print("Loading GPT-3.5")
        llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.1)
    elif model == "GPT-4":
        print("Loading GPT-4")
        llm = ChatOpenAI(model_name="gpt-4", temperature=0.1)
    elif model == "Flan UL2":
        print("Loading Flan-UL2")
        llm = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature": 0.1, "max_new_tokens":500})
    elif model == "Flan T5":
        print("Loading Flan T5")
        llm = HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature": 0.1})
    else:
        print("Loading GPT-3.5 from else")
        llm = ChatOpenAI(model_name="text-davinci-002", temperature=0.1)


def set_embeddings(model):
    global embeddings
    if model == "GPT-3.5" or model == "GPT-4":
        print("Loading OpenAI embeddings")
        embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
    elif model == "Flan UL2" or model == "Flan T5":
        print("Loading Hugging Face embeddings")
        embeddings = HuggingFaceHubEmbeddings(repo_id="sentence-transformers/all-MiniLM-L6-v2")


def get_search_index(model):
    global vectorstore_index
    if os.path.isfile(get_file_path(model, pickle_file)) and os.path.isfile(
            get_file_path(model, index_file)) and os.path.getsize(get_file_path(model, pickle_file)) > 0:
        # Load index from pickle file
        with open(get_file_path(model, pickle_file), "rb") as f:
            search_index = pickle.load(f)
            print("Loaded index")
    else:
        search_index = create_index(model)
        print("Created index")

    vectorstore_index = search_index
    return search_index


def create_index(model):
    source_chunks = create_chunk_documents()
    search_index = search_index_from_docs(source_chunks)
    faiss.write_index(search_index.index, get_file_path(model, index_file))
    # Save index to pickle file
    with open(get_file_path(model, pickle_file), "wb") as f:
        pickle.dump(search_index, f)
    return search_index


def get_file_path(model, file):
    # If model is GPT3.5 or GPT4 return models_folder + openai + file else return models_folder + hf + file
    if model == "GPT-3.5" or model == "GPT-4":
        return models_folder + "openai" + file
    else:
        return models_folder + "hf" + file


def search_index_from_docs(source_chunks):
    # print("source chunks: " + str(len(source_chunks)))
    # print("embeddings: " + str(embeddings))

    search_index = FAISS.from_documents(source_chunks, embeddings)
    return search_index


def get_html_files():
    loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
    document_list = loader.load()
    return document_list


def fetch_data_for_embeddings():
    document_list = get_text_files()
    document_list.extend(get_html_files())
    print("document list: " + str(len(document_list)))
    return document_list


def get_text_files():
    loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
    document_list = loader.load()
    return document_list


def create_chunk_documents():
    sources = fetch_data_for_embeddings()

    splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)

    source_chunks = splitter.split_documents(sources)

    print("chunks: " + str(len(source_chunks)))

    return source_chunks


def get_qa_chain(vectorstore_index):
    global llm, model_name
    print(llm)

    # embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
    # compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=gpt_3_5_index.as_retriever())
    retriever = vectorstore_index.as_retriever(search_type="similarity_score_threshold",
                                               search_kwargs={"score_threshold": .5})

    chain = ConversationalRetrievalChain.from_llm(llm, retriever, return_source_documents=True,
                                                  verbose=True, get_chat_history=get_chat_history,
                                                  combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
    return chain


def get_chat_history(inputs) -> str:
    res = []
    for human, ai in inputs:
        res.append(f"Human:{human}\nAI:{ai}")
    return "\n".join(res)


def generate_answer(question) -> str:
    global chat_history, vectorstore_index
    chain = get_qa_chain(vectorstore_index)

    result = chain(
        {"question": question, "chat_history": chat_history, "vectordbkwargs": {"search_distance": 0.6}})
    chat_history = [(question, result["answer"])]
    sources = []
    print(result)

    for document in result['source_documents']:
        source = document.metadata['source']
        sources.append(source.split('/')[-1].split('.')[0])
        print(sources)

    source = ',\n'.join(set(sources))
    return result['answer'] + '\nSOURCES: ' + source