import time import uuid import gradio as gr from gtts import gTTS from transformers import pipeline from main import index, run p = pipeline("automatic-speech-recognition", model="openai/whisper-base") """Use text to call chat method from main.py""" models = ["GPT-3.5", "Flan UL2", "Flan T5"] with gr.Blocks(theme='snehilsanyal/scikit-learn') as demo: state = gr.State([]) def create_session_id(): return str(uuid.uuid4()) def add_text(history, text, model): print("Question asked: " + text) response = run_model(text, model) history = history + [(text, response)] print(history) return history, "" def run_model(text, model): start_time = time.time() print("start time:" + str(start_time)) response = run(text, model, state.session_id) end_time = time.time() # If response contains string `SOURCES:`, then add a \n before `SOURCES` if "SOURCES:" in response: response = response.replace("SOURCES:", "\nSOURCES:") # response = response + "\n\n" + "Time taken: " + str(end_time - start_time) print(response) print("Time taken: " + str(end_time - start_time)) return response def get_output(history, audio, model): txt = p(audio)["text"] # history.append(( (audio, ) , txt)) audio_path = 'response.wav' response = run_model(txt, model) # Remove all text from SOURCES: to the end of the string trimmed_response = response.split("SOURCES:")[0] myobj = gTTS(text=trimmed_response, lang='en', slow=False) myobj.save(audio_path) # split audio by / and keep the last element # audio = audio.split("/")[-1] # audio = audio + ".wav" history.append(((audio,), (audio_path,))) print(history) return history def set_model(history, model): print("Model selected: " + model) history = get_first_message(history) index(model, state.session_id) return history def get_first_message(history): history = [(None, 'Learn about 3D printing Applications course with referred sources.')] return history def bot(history): return history state.session_id = create_session_id() print("Session ID: " + state.session_id) # Title on top in middle of the page # gr.HTML("

Course Assistant - 3D Printing Revolution

") chatbot = gr.Chatbot(get_first_message([]), elem_id="chatbot", label='3D Printing Revolution').style(height=400, container=False) # with gr.Row(): # Create radio button to select model radio = gr.Radio(models, label="Choose a model", value="GPT-3.5", type="value", visible=False) with gr.Row(): # with gr.Column(scale=0.75): txt = gr.Textbox( label="Ask your question here", placeholder="Enter text and press enter", lines=1 ).style(container=False) # with gr.Column(scale=0.25): audio = gr.Audio(source="microphone", type="filepath", visible=False) txt.submit(add_text, [chatbot, txt, radio], [chatbot, txt], postprocess=False).then( bot, chatbot, chatbot ) audio.change(fn=get_output, inputs=[chatbot, audio, radio], outputs=[chatbot], show_progress=True).then( bot, chatbot, chatbot ) radio.change(fn=set_model, inputs=[chatbot, radio], outputs=[chatbot]).then(bot, chatbot, chatbot) audio.change(lambda: None, None, audio) set_model(chatbot, radio.value) if __name__ == "__main__": demo.queue() demo.queue(concurrency_count=5) demo.launch(debug=True)