import os import pickle import faiss import langchain from langchain import HuggingFaceHub from langchain.cache import InMemoryCache from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader, PyPDFDirectoryLoader from langchain.embeddings import OpenAIEmbeddings, HuggingFaceHubEmbeddings from langchain.memory import ConversationBufferWindowMemory from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.faiss import FAISS from mapping import FILE_URL_MAPPING from memory import CustomMongoDBChatMessageHistory langchain.llm_cache = InMemoryCache() global model_name models = ["GPT-3.5", "Flan UL2", "GPT-4", "Flan T5"] pickle_file = "_vs.pkl" index_file = "_vs.index" models_folder = "models/" MONGO_DB_URL = os.environ['MONGO_DB_URL'] llm = ChatOpenAI(model_name="gpt-4", temperature=0.1) embeddings = OpenAIEmbeddings(model='text-embedding-ada-002') message_history = CustomMongoDBChatMessageHistory( connection_string=MONGO_DB_URL, session_id='session_id', database_name='coursera_bots', collection_name='3d_printing_applications' ) memory = ConversationBufferWindowMemory(memory_key="chat_history", k=4) vectorstore_index = None system_template = """You are Coursera QA Bot. Have a conversation with a human, answering the following questions as best you can. You are a teaching assistant for a Coursera Course: 3D Printing Applications and can answer any question about that using vectorstore or context. Use the following pieces of context to answer the users question. ---------------- {context}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] CHAT_PROMPT = ChatPromptTemplate.from_messages(messages) def set_session_id(session_id): global message_history, memory # check if message_history with same session id exists if message_history.session_id == session_id: print("Session id already set: " + str(message_history.session_id)) else: # create new message history with session id print("Setting session id to " + str(session_id)) message_history = CustomMongoDBChatMessageHistory( connection_string=MONGO_DB_URL, session_id=session_id, database_name='coursera_bots', collection_name='printing_3d_applications' ) memory = ConversationBufferWindowMemory(memory_key="chat_history", chat_memory=message_history, k=10, return_messages=True) def set_model_and_embeddings(model): set_model(model) # set_embeddings(model) def set_model(model): global llm print("Setting model to " + str(model)) if model == "GPT-3.5": print("Loading GPT-3.5") llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.1) elif model == "GPT-4": print("Loading GPT-4") llm = ChatOpenAI(model_name="gpt-4", temperature=0.1) elif model == "Flan UL2": print("Loading Flan-UL2") llm = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature": 0.1, "max_new_tokens": 500}) elif model == "Flan T5": print("Loading Flan T5") llm = HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature": 0.1}) else: print("Loading GPT-3.5 from else") llm = ChatOpenAI(model_name="text-davinci-002", temperature=0.1) def set_embeddings(model): global embeddings if model == "GPT-3.5" or model == "GPT-4": print("Loading OpenAI embeddings") embeddings = OpenAIEmbeddings(model='text-embedding-ada-002') elif model == "Flan UL2" or model == "Flan T5": print("Loading Hugging Face embeddings") embeddings = HuggingFaceHubEmbeddings(repo_id="sentence-transformers/all-MiniLM-L6-v2") def get_search_index(model): global vectorstore_index if os.path.isfile(get_file_path(model, pickle_file)) and os.path.isfile( get_file_path(model, index_file)) and os.path.getsize(get_file_path(model, pickle_file)) > 0: # Load index from pickle file with open(get_file_path(model, pickle_file), "rb") as f: search_index = pickle.load(f) print("Loaded index") else: search_index = create_index(model) print("Created index") vectorstore_index = search_index return search_index def create_index(model): source_chunks = create_chunk_documents() search_index = search_index_from_docs(source_chunks) faiss.write_index(search_index.index, get_file_path(model, index_file)) # Save index to pickle file with open(get_file_path(model, pickle_file), "wb") as f: pickle.dump(search_index, f) return search_index def get_file_path(model, file): # If model is GPT3.5 or GPT4 return models_folder + openai + file else return models_folder + hf + file if model == "GPT-3.5" or model == "GPT-4": return models_folder + "openai" + file else: return models_folder + "hf" + file def search_index_from_docs(source_chunks): # print("source chunks: " + str(len(source_chunks))) # print("embeddings: " + str(embeddings)) search_index = FAISS.from_documents(source_chunks, embeddings) return search_index def get_pdf_files(): loader = PyPDFDirectoryLoader('docs', glob="**/*.pdf", recursive=True) document_list = loader.load() return document_list def get_html_files(): loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True) document_list = loader.load() return document_list def fetch_data_for_embeddings(): document_list = get_text_files() document_list.extend(get_html_files()) document_list.extend(get_pdf_files()) # use file_url_mapping to set metadata of document to url which has been set as the source for document in document_list: document.metadata["url"] = FILE_URL_MAPPING.get(document.metadata["source"]) print("document list: " + str(len(document_list))) return document_list def get_text_files(): loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True) document_list = loader.load() return document_list def create_chunk_documents(): sources = fetch_data_for_embeddings() splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0) source_chunks = splitter.split_documents(sources) print("chunks: " + str(len(source_chunks))) return source_chunks def get_qa_chain(vectorstore_index): global llm print(llm) # embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76) # compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=gpt_3_5_index.as_retriever()) retriever = vectorstore_index.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .76}) chain = ConversationalRetrievalChain.from_llm(llm, retriever, return_source_documents=True, verbose=True, combine_docs_chain_kwargs={"prompt": CHAT_PROMPT}) return chain def get_chat_history(inputs) -> str: res = [] for human, ai in inputs: res.append(f"Human:{human}\nAI:{ai}") return "\n".join(res) def generate_answer(question) -> str: global vectorstore_index chain = get_qa_chain(vectorstore_index) # get last 4 messages from chat history history = memory.chat_memory.messages[-4:] result = chain( {"question": question, "chat_history": history}) save_chat_history(question, result) sources = [] print(result) for document in result['source_documents']: sources.append("\n" + document.metadata['url']) print(sources) source = ',\n'.join(set(sources)) return result['answer'] + '\nSOURCES: ' + source def save_chat_history(question, result): memory.chat_memory.add_user_message(question) memory.chat_memory.add_ai_message(result["answer"]) print("chat history after saving: " + str(memory.chat_memory.messages))