rohan13's picture
added press enter to label
151932e
import time
import uuid
import gradio as gr
from gtts import gTTS
from transformers import pipeline
from main import index, run
p = pipeline("automatic-speech-recognition", model="openai/whisper-base")
"""Use text to call chat method from main.py"""
models = ["GPT-3.5", "Flan UL2", "Flan T5"]
with gr.Blocks(theme='snehilsanyal/scikit-learn') as demo:
state = gr.State([])
def create_session_id():
return str(uuid.uuid4())
def add_text(history, text, model):
print("Question asked: " + text)
response = run_model(text, model)
history = history + [(text, response)]
print(history)
return history, ""
def run_model(text, model):
start_time = time.time()
print("start time:" + str(start_time))
response = run(text, model, state.session_id)
end_time = time.time()
# If response contains string `SOURCES:`, then add a \n before `SOURCES`
if "SOURCES:" in response:
response = response.replace("SOURCES:", "\nSOURCES:")
# response = response + "\n\n" + "Time taken: " + str(end_time - start_time)
print(response)
print("Time taken: " + str(end_time - start_time))
return response
def get_output(history, audio, model):
txt = p(audio)["text"]
# history.append(( (audio, ) , txt))
audio_path = 'response.wav'
response = run_model(txt, model)
# Remove all text from SOURCES: to the end of the string
trimmed_response = response.split("SOURCES:")[0]
myobj = gTTS(text=trimmed_response, lang='en', slow=False)
myobj.save(audio_path)
# split audio by / and keep the last element
# audio = audio.split("/")[-1]
# audio = audio + ".wav"
history.append(((audio,), (audio_path,)))
print(history)
return history
def set_model(history, model):
print("Model selected: " + model)
history = get_first_message(history)
index(model, state.session_id)
return history
def get_first_message(history):
history = [(None,
'Learn about the course and get answers with referred sources.\nWarning! Use the bot wisely. It might give incorrect answers.')]
return history
def bot(history):
return history
state.session_id = create_session_id()
print("Session ID: " + state.session_id)
# Title on top in middle of the page
# gr.HTML("<h1 style='text-align: center;'>Course Assistant - 3D Printing Revolution</h1>")
chatbot = gr.Chatbot(get_first_message([]), elem_id="chatbot", label='3D Printing Revolution').style(height=300,
container=False)
# with gr.Row():
# Create radio button to select model
radio = gr.Radio(models, label="Choose a model", value="GPT-3.5", type="value", visible=False)
with gr.Row():
# with gr.Column(scale=0.75):
txt = gr.Textbox(
label="Ask your question here and press enter",
placeholder="Enter text and press enter", lines=1
).style(container=False)
# with gr.Column(scale=0.25):
audio = gr.Audio(source="microphone", type="filepath", visible=False)
with gr.Row():
gr.Examples(
examples=['What is 3D printing?', 'Who are the instructors of the course?', 'What is the course about?',
'Which software can be used to create a design file for 3D printing?',
'What are the key takeaways from the course?', 'How to create a 3D printing design file?'],
inputs=[txt],
label="Examples")
txt.submit(add_text, [chatbot, txt, radio], [chatbot, txt], postprocess=False).then(
bot, chatbot, chatbot
)
audio.change(fn=get_output, inputs=[chatbot, audio, radio], outputs=[chatbot], show_progress=True).then(
bot, chatbot, chatbot
)
radio.change(fn=set_model, inputs=[chatbot, radio], outputs=[chatbot]).then(bot, chatbot, chatbot)
audio.change(lambda: None, None, audio)
set_model(chatbot, radio.value)
if __name__ == "__main__":
demo.queue()
demo.queue(concurrency_count=5)
demo.launch(debug=True)