Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import io
|
|
6 |
import base64
|
7 |
from datasets import load_dataset
|
8 |
|
9 |
-
|
10 |
max_token_budget = 512
|
11 |
|
12 |
min_pixels = 1 * 28 * 28
|
@@ -77,7 +76,6 @@ def doc_to_messages(text, slides):
|
|
77 |
text = processor.apply_chat_template(
|
78 |
messages, tokenize=False, add_generation_prompt=True
|
79 |
)
|
80 |
-
print(text)
|
81 |
image_inputs, video_inputs = process_vision_info(messages)
|
82 |
inputs = processor(
|
83 |
text=[text],
|
@@ -93,6 +91,8 @@ def doc_to_messages(text, slides):
|
|
93 |
current_doc_index = 0
|
94 |
annotations = []
|
95 |
|
|
|
|
|
96 |
def load_document(index):
|
97 |
"""Load a specific document from the dataset"""
|
98 |
if 0 <= index < len(ds):
|
@@ -103,19 +103,25 @@ def load_document(index):
|
|
103 |
doc["abstract"],
|
104 |
create_interleaved_html(segments_doc, doc["slides"], scale=0.7),
|
105 |
doc_to_messages(segments_doc, doc["slides"]).input_ids.shape[1],
|
|
|
106 |
)
|
107 |
-
return ("", "", "", "")
|
108 |
|
109 |
def get_next_document():
|
110 |
"""Get the next document in the dataset"""
|
111 |
global current_doc_index
|
112 |
-
|
113 |
-
return load_document(current_doc_index)
|
114 |
|
115 |
def get_prev_document():
|
116 |
"""Get the previous document in the dataset"""
|
117 |
global current_doc_index
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
return load_document(current_doc_index)
|
120 |
|
121 |
|
@@ -123,36 +129,34 @@ theme = gr.themes.Ocean()
|
|
123 |
|
124 |
with gr.Blocks(theme=theme) as demo:
|
125 |
gr.Markdown("# Slide Presentation Visualization Tool")
|
|
|
126 |
with gr.Row():
|
127 |
with gr.Column():
|
128 |
body = gr.HTML(max_height=400)
|
129 |
|
130 |
-
# Function to update the interleaved view
|
131 |
-
def update_interleaved_view(title, abstract, body, token_count):
|
132 |
-
return body
|
133 |
-
|
134 |
with gr.Column():
|
135 |
title = gr.Textbox(label="Title", interactive=False, max_lines=1)
|
136 |
abstract = gr.Textbox(label="Abstract", interactive=False, max_lines=8)
|
137 |
token_count = gr.Textbox(label=f"Token Count (Qwen2-VL with under {max_token_budget} tokens per image)", interactive=False, max_lines=1)
|
138 |
|
139 |
-
title.change(
|
140 |
-
fn=update_interleaved_view,
|
141 |
-
inputs=[title, abstract, body, token_count],
|
142 |
-
outputs=body,
|
143 |
-
)
|
144 |
# Load first document
|
145 |
-
title_val, abstract_val, body_val, token_count_val = load_document(current_doc_index)
|
146 |
title.value = title_val
|
147 |
abstract.value = abstract_val
|
148 |
body.value = body_val
|
149 |
token_count.value = str(token_count_val)
|
|
|
150 |
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
with gr.Row():
|
153 |
prev_button = gr.Button("Previous Document")
|
154 |
-
prev_button.click(fn=get_prev_document, inputs=[], outputs=[
|
155 |
next_button = gr.Button("Next Document")
|
156 |
-
next_button.click(fn=get_next_document, inputs=[], outputs=[
|
157 |
|
158 |
demo.launch()
|
|
|
6 |
import base64
|
7 |
from datasets import load_dataset
|
8 |
|
|
|
9 |
max_token_budget = 512
|
10 |
|
11 |
min_pixels = 1 * 28 * 28
|
|
|
76 |
text = processor.apply_chat_template(
|
77 |
messages, tokenize=False, add_generation_prompt=True
|
78 |
)
|
|
|
79 |
image_inputs, video_inputs = process_vision_info(messages)
|
80 |
inputs = processor(
|
81 |
text=[text],
|
|
|
91 |
current_doc_index = 0
|
92 |
annotations = []
|
93 |
|
94 |
+
choices = [f"{i} | {ds['title'][i]}" for i in range(len(ds))]
|
95 |
+
|
96 |
def load_document(index):
|
97 |
"""Load a specific document from the dataset"""
|
98 |
if 0 <= index < len(ds):
|
|
|
103 |
doc["abstract"],
|
104 |
create_interleaved_html(segments_doc, doc["slides"], scale=0.7),
|
105 |
doc_to_messages(segments_doc, doc["slides"]).input_ids.shape[1],
|
106 |
+
choices[index],
|
107 |
)
|
108 |
+
return ("", "", "", "", "")
|
109 |
|
110 |
def get_next_document():
|
111 |
"""Get the next document in the dataset"""
|
112 |
global current_doc_index
|
113 |
+
return choices[(current_doc_index + 1) % len(ds)]
|
|
|
114 |
|
115 |
def get_prev_document():
|
116 |
"""Get the previous document in the dataset"""
|
117 |
global current_doc_index
|
118 |
+
return choices[(current_doc_index - 1) % len(ds)]
|
119 |
+
|
120 |
+
def get_selected_document(arg):
|
121 |
+
"""Get the selected document from the dataset"""
|
122 |
+
global current_doc_index
|
123 |
+
index = int(arg.split(" | ")[0])
|
124 |
+
current_doc_index = index
|
125 |
return load_document(current_doc_index)
|
126 |
|
127 |
|
|
|
129 |
|
130 |
with gr.Blocks(theme=theme) as demo:
|
131 |
gr.Markdown("# Slide Presentation Visualization Tool")
|
132 |
+
pres_selection_dd = gr.Dropdown(label="Presentation", value=choices[0], choices=choices)
|
133 |
with gr.Row():
|
134 |
with gr.Column():
|
135 |
body = gr.HTML(max_height=400)
|
136 |
|
|
|
|
|
|
|
|
|
137 |
with gr.Column():
|
138 |
title = gr.Textbox(label="Title", interactive=False, max_lines=1)
|
139 |
abstract = gr.Textbox(label="Abstract", interactive=False, max_lines=8)
|
140 |
token_count = gr.Textbox(label=f"Token Count (Qwen2-VL with under {max_token_budget} tokens per image)", interactive=False, max_lines=1)
|
141 |
|
|
|
|
|
|
|
|
|
|
|
142 |
# Load first document
|
143 |
+
title_val, abstract_val, body_val, token_count_val, choices_val = load_document(current_doc_index)
|
144 |
title.value = title_val
|
145 |
abstract.value = abstract_val
|
146 |
body.value = body_val
|
147 |
token_count.value = str(token_count_val)
|
148 |
+
pres_selection_dd.value = choices_val
|
149 |
|
150 |
+
pres_selection_dd.change(
|
151 |
+
fn=get_selected_document,
|
152 |
+
inputs=pres_selection_dd,
|
153 |
+
outputs=[title, abstract, body, token_count, pres_selection_dd],
|
154 |
+
)
|
155 |
|
156 |
with gr.Row():
|
157 |
prev_button = gr.Button("Previous Document")
|
158 |
+
prev_button.click(fn=get_prev_document, inputs=[], outputs=[pres_selection_dd])
|
159 |
next_button = gr.Button("Next Document")
|
160 |
+
next_button.click(fn=get_next_document, inputs=[], outputs=[pres_selection_dd])
|
161 |
|
162 |
demo.launch()
|