ginic's picture
Added sample app functionality
d079ec5
raw
history blame
771 Bytes
import gradio as gr
from transformers import pipeline
MODEL_NAME="ctaguchi/wav2vec2-large-xlsr-japlmthufielta-ipa1000-ns"
#MODEL_NAME="ginic/wav2vec-large-xlsr-en-ipa")
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME)
def predict(audio_in):
return pipe(audio_in)["text"]
def launch_demo():
with gr.Blocks() as demo:
gr.Markdown(f"""
# Automatic International Phonetic Alphabet Transcription
This demo allows you to experiment with producing phonetic transcriptions of uploaded or recorded audio using the model '{MODEL_NAME}'.
""")
gr.Interface(fn=predict, inputs=gr.Audio(type="filepath"), outputs="text", allow_flagging="never")
demo.launch()
if __name__ == "__main__":
launch_demo()