Spaces:
Sleeping
Sleeping
Added TextGrid output to model with download button
Browse files
app.py
CHANGED
@@ -1,10 +1,16 @@
|
|
1 |
from pathlib import Path
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
-
|
|
|
|
|
5 |
from transformers import pipeline
|
6 |
|
|
|
7 |
DEFAULT_MODEL = "ginic/data_seed_bs64_4_wav2vec2-large-xlsr-53-buckeye-ipa"
|
|
|
|
|
8 |
|
9 |
|
10 |
VALID_MODELS = [
|
@@ -23,10 +29,27 @@ VALID_MODELS = [
|
|
23 |
"ginic/gender_split_70_female_3_wav2vec2-large-xlsr-53-buckeye-ipa",
|
24 |
"ginic/gender_split_70_female_4_wav2vec2-large-xlsr-53-buckeye-ipa",
|
25 |
"ginic/gender_split_70_female_5_wav2vec2-large-xlsr-53-buckeye-ipa",
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
]
|
27 |
|
28 |
|
29 |
-
def load_model_and_predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
if model_state["model_name"] != model_name:
|
31 |
model_state = {
|
32 |
"loaded_model": pipeline(
|
@@ -35,16 +58,50 @@ def load_model_and_predict(model_name: str, audio_in: str, model_state: dict):
|
|
35 |
"model_name": model_name,
|
36 |
}
|
37 |
|
|
|
38 |
return (
|
39 |
-
|
40 |
model_state,
|
41 |
-
gr.
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
|
44 |
|
45 |
-
def
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
def launch_demo():
|
@@ -71,45 +128,46 @@ def launch_demo():
|
|
71 |
|
72 |
prediction = gr.Textbox(label="Predicted IPA transcription")
|
73 |
|
|
|
|
|
|
|
74 |
textgrid_tier = gr.Textbox(
|
75 |
label="TextGrid Tier Name", value="transcription", interactive=True
|
76 |
)
|
77 |
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
inputs=[
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
85 |
)
|
86 |
-
|
|
|
|
|
|
|
87 |
fn=load_model_and_predict,
|
88 |
inputs=[model_name, audio_in, model_state],
|
89 |
-
outputs=[prediction, model_state,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
|
92 |
-
|
93 |
-
# fn=load_model_and_predict,
|
94 |
-
# inputs=[
|
95 |
-
# gr.Dropdown(
|
96 |
-
# VALID_MODELS,
|
97 |
-
# value=DEFAULT_MODEL,
|
98 |
-
# label="IPA transcription ASR model",
|
99 |
-
# info="Select the model to use for prediction.",
|
100 |
-
# ),
|
101 |
-
# gr.Audio(type="filepath", show_download_button=True),
|
102 |
-
# gr.State(
|
103 |
-
# value=initial_model
|
104 |
-
# ), # Store the name of the currently loaded model
|
105 |
-
# ],
|
106 |
-
# outputs=[gr.Textbox(label="Predicted IPA transcription"), gr.State()],
|
107 |
-
# allow_flagging="never",
|
108 |
-
# title="Automatic International Phonetic Alphabet Transcription",
|
109 |
-
# description="This demo allows you to experiment with producing phonetic transcriptions of uploaded or recorded audio using a selected automatic speech recognition (ASR) model.",
|
110 |
-
# )
|
111 |
-
|
112 |
-
demo.launch()
|
113 |
|
114 |
|
115 |
if __name__ == "__main__":
|
|
|
1 |
from pathlib import Path
|
2 |
+
import tempfile
|
3 |
|
4 |
import gradio as gr
|
5 |
+
import librosa
|
6 |
+
import tgt.core
|
7 |
+
import tgt.io3
|
8 |
from transformers import pipeline
|
9 |
|
10 |
+
TEXTGRID_DIR = tempfile.mkdtemp()
|
11 |
DEFAULT_MODEL = "ginic/data_seed_bs64_4_wav2vec2-large-xlsr-53-buckeye-ipa"
|
12 |
+
TEXTGRID_DOWNLOAD_TEXT = "Download TextGrid file"
|
13 |
+
TEXTGRID_NAME_INPUT_LABEL = "TextGrid file name"
|
14 |
|
15 |
|
16 |
VALID_MODELS = [
|
|
|
29 |
"ginic/gender_split_70_female_3_wav2vec2-large-xlsr-53-buckeye-ipa",
|
30 |
"ginic/gender_split_70_female_4_wav2vec2-large-xlsr-53-buckeye-ipa",
|
31 |
"ginic/gender_split_70_female_5_wav2vec2-large-xlsr-53-buckeye-ipa",
|
32 |
+
"ginic/vary_individuals_old_only_1_wav2vec2-large-xlsr-53-buckeye-ipa",
|
33 |
+
"ginic/vary_individuals_old_only_2_wav2vec2-large-xlsr-53-buckeye-ipa",
|
34 |
+
"ginic/vary_individuals_old_only_3_wav2vec2-large-xlsr-53-buckeye-ipa",
|
35 |
+
"ginic/vary_individuals_young_only_1_wav2vec2-large-xlsr-53-buckeye-ipa",
|
36 |
+
"ginic/vary_individuals_young_only_2_wav2vec2-large-xlsr-53-buckeye-ipa",
|
37 |
+
"ginic/vary_individuals_young_only_3_wav2vec2-large-xlsr-53-buckeye-ipa",
|
38 |
]
|
39 |
|
40 |
|
41 |
+
def load_model_and_predict(
|
42 |
+
model_name: str,
|
43 |
+
audio_in: str,
|
44 |
+
model_state: dict,
|
45 |
+
):
|
46 |
+
if audio_in is None:
|
47 |
+
return (
|
48 |
+
"",
|
49 |
+
model_state,
|
50 |
+
gr.Textbox(label=TEXTGRID_NAME_INPUT_LABEL, interactive=False),
|
51 |
+
)
|
52 |
+
|
53 |
if model_state["model_name"] != model_name:
|
54 |
model_state = {
|
55 |
"loaded_model": pipeline(
|
|
|
58 |
"model_name": model_name,
|
59 |
}
|
60 |
|
61 |
+
prediction = model_state["loaded_model"](audio_in)["text"]
|
62 |
return (
|
63 |
+
prediction,
|
64 |
model_state,
|
65 |
+
gr.Textbox(
|
66 |
+
label=TEXTGRID_NAME_INPUT_LABEL,
|
67 |
+
interactive=True,
|
68 |
+
value=Path(audio_in).with_suffix(".TextGrid").name,
|
69 |
+
),
|
70 |
)
|
71 |
|
72 |
|
73 |
+
def get_textgrid_contents(audio_in, textgrid_tier_name, transcription_prediction):
|
74 |
+
if audio_in is None or transcription_prediction is None:
|
75 |
+
return ""
|
76 |
+
|
77 |
+
duration = librosa.get_duration(path=audio_in)
|
78 |
+
|
79 |
+
annotation = tgt.core.Interval(0, duration, transcription_prediction)
|
80 |
+
transcription_tier = tgt.core.IntervalTier(
|
81 |
+
start_time=0, end_time=duration, name=textgrid_tier_name
|
82 |
+
)
|
83 |
+
transcription_tier.add_annotation(annotation)
|
84 |
+
textgrid = tgt.core.TextGrid()
|
85 |
+
textgrid.add_tier(transcription_tier)
|
86 |
+
return tgt.io3.export_to_long_textgrid(textgrid)
|
87 |
+
|
88 |
+
|
89 |
+
def write_textgrid(textgrid_contents, textgrid_filename):
|
90 |
+
"""Writes the text grid contents to a named file in the temporary directory.
|
91 |
+
Returns the path for download.
|
92 |
+
"""
|
93 |
+
textgrid_path = Path(TEXTGRID_DIR) / Path(textgrid_filename).name
|
94 |
+
textgrid_path.write_text(textgrid_contents)
|
95 |
+
return textgrid_path
|
96 |
+
|
97 |
+
|
98 |
+
def get_interactive_download_button(textgrid_contents, textgrid_filename):
|
99 |
+
return gr.DownloadButton(
|
100 |
+
label=TEXTGRID_DOWNLOAD_TEXT,
|
101 |
+
variant="primary",
|
102 |
+
interactive=True,
|
103 |
+
value=write_textgrid(textgrid_contents, textgrid_filename),
|
104 |
+
)
|
105 |
|
106 |
|
107 |
def launch_demo():
|
|
|
128 |
|
129 |
prediction = gr.Textbox(label="Predicted IPA transcription")
|
130 |
|
131 |
+
gr.Markdown("""## TextGrid File Options
|
132 |
+
Change these inputs if you'd like to customize and download the transcription in [TextGrid format](https://www.fon.hum.uva.nl/praat/manual/TextGrid_file_formats.html) for Praat.
|
133 |
+
""")
|
134 |
textgrid_tier = gr.Textbox(
|
135 |
label="TextGrid Tier Name", value="transcription", interactive=True
|
136 |
)
|
137 |
|
138 |
+
textgrid_filename = gr.Textbox(
|
139 |
+
label=TEXTGRID_NAME_INPUT_LABEL, interactive=False
|
140 |
+
)
|
141 |
|
142 |
+
textgrid_contents = gr.Textbox(
|
143 |
+
label="TextGrid Contents",
|
144 |
+
value=get_textgrid_contents,
|
145 |
+
inputs=[audio_in, textgrid_tier, prediction],
|
146 |
+
)
|
147 |
+
|
148 |
+
download_btn = gr.DownloadButton(
|
149 |
+
label=TEXTGRID_DOWNLOAD_TEXT,
|
150 |
+
interactive=False, # Don't allow download button to be active until an upload happened
|
151 |
+
variant="primary",
|
152 |
)
|
153 |
+
|
154 |
+
# Update prediction if model or audio changes
|
155 |
+
gr.on(
|
156 |
+
triggers=[audio_in.input, model_name.change],
|
157 |
fn=load_model_and_predict,
|
158 |
inputs=[model_name, audio_in, model_state],
|
159 |
+
outputs=[prediction, model_state, textgrid_filename],
|
160 |
+
)
|
161 |
+
|
162 |
+
# Download button becomes interactive if user updates audio or textgrid params
|
163 |
+
gr.on(
|
164 |
+
triggers=[textgrid_contents.change, textgrid_filename.change],
|
165 |
+
fn=get_interactive_download_button,
|
166 |
+
inputs=[textgrid_contents, textgrid_filename],
|
167 |
+
outputs=[download_btn],
|
168 |
)
|
169 |
|
170 |
+
demo.launch(max_file_size="100mb")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
|
173 |
if __name__ == "__main__":
|