Spaces:
Running
Running
Updated model list
Browse files
app.py
CHANGED
@@ -2,57 +2,70 @@ import gradio as gr
|
|
2 |
|
3 |
from transformers import pipeline
|
4 |
|
5 |
-
DEFAULT_MODEL = "ginic/
|
|
|
6 |
|
7 |
VALID_MODELS = [
|
8 |
"ctaguchi/wav2vec2-large-xlsr-japlmthufielta-ipa-plus-2000",
|
9 |
-
"ginic/
|
10 |
-
"ginic/
|
11 |
-
"ginic/
|
12 |
-
"ginic/
|
13 |
-
"ginic/
|
14 |
-
"ginic/
|
15 |
-
"ginic/
|
16 |
-
"ginic/
|
17 |
-
"ginic/
|
18 |
-
"ginic/
|
19 |
-
"ginic/
|
20 |
-
"ginic/
|
21 |
-
"ginic/
|
22 |
-
"ginic/
|
23 |
-
|
24 |
-
"ginic/vary_individuals_old_only_1_wav2vec2-large-xlsr-buckeye-ipa",
|
25 |
-
"ginic/vary_individuals_old_only_2_wav2vec2-large-xlsr-buckeye-ipa",
|
26 |
-
"ginic/vary_individuals_old_only_3_wav2vec2-large-xlsr-buckeye-ipa",
|
27 |
-
"ginic/vary_individuals_young_only_1_wav2vec2-large-xlsr-buckeye-ipa",
|
28 |
-
"ginic/vary_individuals_young_only_2_wav2vec2-large-xlsr-buckeye-ipa",
|
29 |
-
"ginic/vary_individuals_young_only_3_wav2vec2-large-xlsr-buckeye-ipa"
|
30 |
]
|
31 |
|
|
|
32 |
def load_model_and_predict(model_name, audio_in, model_state):
|
33 |
if model_state["model_name"] != model_name:
|
34 |
-
model_state = {
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
return model_state["loaded_model"](audio_in)["text"], model_state
|
38 |
|
|
|
39 |
def launch_demo():
|
40 |
-
initial_model = {
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
gr.Audio(type="filepath"),
|
47 |
-
gr.State(
|
48 |
-
|
|
|
|
|
49 |
outputs=[gr.Textbox(label="Predicted IPA transcription"), gr.State()],
|
50 |
allow_flagging="never",
|
51 |
title="Automatic International Phonetic Alphabet Transcription",
|
52 |
-
description="This demo allows you to experiment with producing phonetic transcriptions of uploaded or recorded audio using a selected automatic speech recognition (ASR) model."
|
53 |
)
|
54 |
|
55 |
demo.launch()
|
56 |
|
|
|
57 |
if __name__ == "__main__":
|
58 |
-
launch_demo()
|
|
|
2 |
|
3 |
from transformers import pipeline
|
4 |
|
5 |
+
DEFAULT_MODEL = "ginic/data_seed_bs64_4_wav2vec2-large-xlsr-53-buckeye-ipa"
|
6 |
+
|
7 |
|
8 |
VALID_MODELS = [
|
9 |
"ctaguchi/wav2vec2-large-xlsr-japlmthufielta-ipa-plus-2000",
|
10 |
+
"ginic/data_seed_bs64_1_wav2vec2-large-xlsr-53-buckeye-ipa",
|
11 |
+
"ginic/data_seed_bs64_2_wav2vec2-large-xlsr-53-buckeye-ipa",
|
12 |
+
"ginic/data_seed_bs64_3_wav2vec2-large-xlsr-53-buckeye-ipa",
|
13 |
+
"ginic/data_seed_bs64_4_wav2vec2-large-xlsr-53-buckeye-ipa",
|
14 |
+
"ginic/gender_split_30_female_1_wav2vec2-large-xlsr-53-buckeye-ipa",
|
15 |
+
"ginic/gender_split_30_female_2_wav2vec2-large-xlsr-53-buckeye-ipa",
|
16 |
+
"ginic/gender_split_30_female_3_wav2vec2-large-xlsr-53-buckeye-ipa",
|
17 |
+
"ginic/gender_split_30_female_4_wav2vec2-large-xlsr-53-buckeye-ipa",
|
18 |
+
"ginic/gender_split_30_female_5_wav2vec2-large-xlsr-53-buckeye-ipa",
|
19 |
+
"ginic/gender_split_70_female_1_wav2vec2-large-xlsr-53-buckeye-ipa",
|
20 |
+
"ginic/gender_split_70_female_2_wav2vec2-large-xlsr-53-buckeye-ipa",
|
21 |
+
"ginic/gender_split_70_female_3_wav2vec2-large-xlsr-53-buckeye-ipa",
|
22 |
+
"ginic/gender_split_70_female_4_wav2vec2-large-xlsr-53-buckeye-ipa",
|
23 |
+
"ginic/gender_split_70_female_5_wav2vec2-large-xlsr-53-buckeye-ipa",
|
24 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
]
|
26 |
|
27 |
+
|
28 |
def load_model_and_predict(model_name, audio_in, model_state):
|
29 |
if model_state["model_name"] != model_name:
|
30 |
+
model_state = {
|
31 |
+
"loaded_model": pipeline(
|
32 |
+
task="automatic-speech-recognition", model=model_name
|
33 |
+
),
|
34 |
+
"model_name": model_name,
|
35 |
+
}
|
36 |
+
|
37 |
return model_state["loaded_model"](audio_in)["text"], model_state
|
38 |
|
39 |
+
|
40 |
def launch_demo():
|
41 |
+
initial_model = {
|
42 |
+
"loaded_model": pipeline(
|
43 |
+
task="automatic-speech-recognition", model=DEFAULT_MODEL
|
44 |
+
),
|
45 |
+
"model_name": DEFAULT_MODEL,
|
46 |
+
}
|
47 |
+
demo = gr.Interface(
|
48 |
+
fn=load_model_and_predict,
|
49 |
+
inputs=[
|
50 |
+
gr.Dropdown(
|
51 |
+
VALID_MODELS,
|
52 |
+
value=DEFAULT_MODEL,
|
53 |
+
label="IPA transcription ASR model",
|
54 |
+
info="Select the model to use for prediction.",
|
55 |
+
),
|
56 |
gr.Audio(type="filepath"),
|
57 |
+
gr.State(
|
58 |
+
value=initial_model
|
59 |
+
), # Store the name of the currently loaded model
|
60 |
+
],
|
61 |
outputs=[gr.Textbox(label="Predicted IPA transcription"), gr.State()],
|
62 |
allow_flagging="never",
|
63 |
title="Automatic International Phonetic Alphabet Transcription",
|
64 |
+
description="This demo allows you to experiment with producing phonetic transcriptions of uploaded or recorded audio using a selected automatic speech recognition (ASR) model.",
|
65 |
)
|
66 |
|
67 |
demo.launch()
|
68 |
|
69 |
+
|
70 |
if __name__ == "__main__":
|
71 |
+
launch_demo()
|