Spaces:
Sleeping
Sleeping
Initial attempt at implementing phone distances
Browse files- README.md +0 -2
- phone_distance.py +61 -30
- requirements.txt +3 -1
README.md
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
---
|
2 |
title: Phone Distance
|
3 |
-
datasets:
|
4 |
-
-
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
|
|
1 |
---
|
2 |
title: Phone Distance
|
|
|
|
|
3 |
tags:
|
4 |
- evaluate
|
5 |
- metric
|
phone_distance.py
CHANGED
@@ -11,29 +11,40 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
"""
|
|
|
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
|
|
|
|
18 |
|
19 |
|
20 |
-
# TODO: Add BibTeX citation
|
21 |
_CITATION = """\
|
22 |
-
@
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
-
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
32 |
"""
|
33 |
|
34 |
|
35 |
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
|
|
37 |
Calculates how good are predictions given some references, using certain scores
|
38 |
Args:
|
39 |
predictions: list of predictions to score. Each predictions
|
@@ -47,19 +58,16 @@ Examples:
|
|
47 |
Examples should be written in doctest format, and should illustrate how
|
48 |
to use the function.
|
49 |
|
50 |
-
>>> my_new_module = evaluate.load("
|
51 |
-
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
52 |
-
>>> print(results)
|
53 |
-
{'accuracy': 1.0}
|
54 |
"""
|
55 |
|
56 |
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class PhoneDistance(evaluate.Metric):
|
62 |
-
"""
|
63 |
|
64 |
def _info(self):
|
65 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
@@ -71,25 +79,48 @@ class PhoneDistance(evaluate.Metric):
|
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
features=datasets.Features({
|
74 |
-
'predictions': datasets.Value('
|
75 |
-
'references': datasets.Value('
|
76 |
}),
|
77 |
-
# Homepage of the module for documentation
|
78 |
-
homepage="http://module.homepage",
|
79 |
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["
|
81 |
-
reference_urls=["
|
82 |
)
|
83 |
|
84 |
-
def
|
85 |
-
"""
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return {
|
94 |
-
"
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""Edit distances between Unicode International Phonetic Alphabet strings.
|
15 |
+
This is basically a Hugging Face wrapper around the panphone library's distance module.
|
16 |
+
"""
|
17 |
|
18 |
import evaluate
|
19 |
import datasets
|
20 |
+
import numpy as np
|
21 |
+
import panphone.distance
|
22 |
|
23 |
|
|
|
24 |
_CITATION = """\
|
25 |
+
@inproceedings{Mortensen-et-al:2016,
|
26 |
+
author = {David R. Mortensen and
|
27 |
+
Patrick Littell and
|
28 |
+
Akash Bharadwaj and
|
29 |
+
Kartik Goyal and
|
30 |
+
Chris Dyer and
|
31 |
+
Lori S. Levin},
|
32 |
+
title = {PanPhon: {A} Resource for Mapping {IPA} Segments to Articulatory Feature Vectors},
|
33 |
+
booktitle = {Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers},
|
34 |
+
pages = {3475--3484},
|
35 |
+
publisher = {{ACL}},
|
36 |
+
year = {2016}
|
37 |
}
|
38 |
"""
|
39 |
|
|
|
40 |
_DESCRIPTION = """\
|
41 |
+
TODO
|
42 |
"""
|
43 |
|
44 |
|
45 |
# TODO: Add description of the arguments of the module here
|
46 |
_KWARGS_DESCRIPTION = """
|
47 |
+
TODO
|
48 |
Calculates how good are predictions given some references, using certain scores
|
49 |
Args:
|
50 |
predictions: list of predictions to score. Each predictions
|
|
|
58 |
Examples should be written in doctest format, and should illustrate how
|
59 |
to use the function.
|
60 |
|
61 |
+
>>> my_new_module = evaluate.load("ginic/phone_distance")
|
|
|
|
|
|
|
62 |
"""
|
63 |
|
64 |
# TODO: Define external resources urls if needed
|
65 |
+
# BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
66 |
|
67 |
|
68 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
69 |
class PhoneDistance(evaluate.Metric):
|
70 |
+
"""Class for computing distance between Unicode IPA strings """
|
71 |
|
72 |
def _info(self):
|
73 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
|
79 |
inputs_description=_KWARGS_DESCRIPTION,
|
80 |
# This defines the format of each prediction and reference
|
81 |
features=datasets.Features({
|
82 |
+
'predictions': datasets.Value('string', id="sequence"),
|
83 |
+
'references': datasets.Value('string', id="sequence"),
|
84 |
}),
|
|
|
|
|
85 |
# Additional links to the codebase or references
|
86 |
+
codebase_urls=["https://github.com/dmort27/panphon", "https://huggingface.co/spaces/ginic/phone_distance/tree/main"],
|
87 |
+
reference_urls=["https://pypi.org/project/panphon/", "https://arxiv.org/abs/2308.03917"]
|
88 |
)
|
89 |
|
90 |
+
def _compute(self, predictions:list[str]|None=None, references:list[str]|None=None, feature_set:str="spe+", feature_model:str="segment", is_normalize_max_length:bool=False):
|
91 |
+
"""Computes phoneme error rates, phone feature error rate (Hamming feature edit distance) and feature error rates between prediction and reference strings
|
92 |
+
|
93 |
+
Args:
|
94 |
+
predictions (list[str], optional): Predicted transcriptions. Defaults to None.
|
95 |
+
references (list[str], optional): Reference transcriptions. Defaults to None.
|
96 |
+
feature_set (str, optional): Feature set to use in the feature model, see panphone documentation for details. Defaults to "spe+".
|
97 |
+
feature_model (str, optional): panphon.distance.Distance feature parsing model to be used, choose from "strict", "permissive", "segment". Defaults to "segment".
|
98 |
+
is_normalize_max_length (bool, optional): Set to true to normalize phone feature error rates by maximum length (measure won't be a true metric). Defaults to False.
|
99 |
|
100 |
+
Returns:
|
101 |
+
_type_: _description_
|
102 |
+
"""
|
103 |
+
distance_computer = panphone.distance.Distance(feature_set=feature_set, feature_model=feature_model)
|
104 |
+
phoneme_error_rates = []
|
105 |
+
feature_error_rates = []
|
106 |
+
hamming_distances = []
|
107 |
+
for p, r in zip(predictions, references):
|
108 |
+
if is_normalize_max_length:
|
109 |
+
hd = distance_computer.hamming_feature_edit_distance_div_maxlen(p, r)
|
110 |
+
else:
|
111 |
+
hd = distance_computer.hamming_feature_edit_distance(p, r)
|
112 |
+
hamming_distances.append(hd)
|
113 |
+
per = distance_computer.phone_error_rate(p, r)
|
114 |
+
phoneme_error_rates.append(per)
|
115 |
+
fer = distance_computer.feature_error_rate(p, r)
|
116 |
+
feature_error_rates.append(fer)
|
117 |
+
|
118 |
return {
|
119 |
+
"phoneme_error_rates": phoneme_error_rates,
|
120 |
+
"mean_phoneme_error_rate": np.mean(phoneme_error_rates),
|
121 |
+
"phone_feature_error_rates": hamming_distances,
|
122 |
+
"mean_phone_feature_error_rates": np.mean(hamming_distances),
|
123 |
+
"feature_error_rates": feature_error_rates,
|
124 |
+
"mean_feature_error_rates": np.mean(feature_error_rates)
|
125 |
+
}
|
126 |
+
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@main
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
numpy
|
3 |
+
panphone==0.20.0
|