Spaces:
Build error
Build error
File size: 11,453 Bytes
81b1a0e e797135 6284dc0 7776a83 6284dc0 e797135 6284dc0 e797135 54516d1 5d10050 7776a83 54516d1 6be00d8 e797135 81b1a0e 53ff575 81b1a0e 7776a83 621c740 7776a83 621c740 7776a83 621c740 7776a83 621c740 81b1a0e 6284dc0 81b1a0e 1592dab 81b1a0e 6284dc0 81b1a0e a10635a 22bfe4c e4862f5 1592dab bcfa392 a10635a f70bf31 a10635a 81b1a0e 7776a83 d967d62 33f3505 d967d62 e797135 741bf59 7776a83 4420101 7776a83 0e5a7e4 4bb8a82 a0ef2a3 bfe6e38 33f3505 b59df1c 741bf59 7776a83 741bf59 22bfe4c 7776a83 22bfe4c 7776a83 22bfe4c 7776a83 741bf59 7776a83 741bf59 5023a18 741bf59 5023a18 741bf59 7776a83 741bf59 85f9120 53ff575 85f9120 53ff575 741bf59 7776a83 53ff575 7776a83 741bf59 33f3505 eefba1b 621c740 53ff575 741bf59 5023a18 7776a83 5023a18 741bf59 8a9ec25 7776a83 741bf59 a63a768 7776a83 a63a768 7776a83 1acca69 7776a83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from glob import glob
from typing import Tuple, Optional
from PIL import Image
from gradio_imageslider import ImageSlider
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
import requests
from io import BytesIO
import zipfile
import random
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
### 이미지 후처리 함수들 ###
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image_np = np.array(image) / 255.0
mask_np = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image_np, mask_np, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
usage_to_weights_file = {
'General': 'BiRefNet',
'General-HR': 'BiRefNet_HR',
'General-Lite': 'BiRefNet_lite',
'General-Lite-2K': 'BiRefNet_lite-2K',
'Matting': 'BiRefNet-matting',
'Portrait': 'BiRefNet-portrait',
'DIS': 'BiRefNet-DIS5K',
'HRSOD': 'BiRefNet-HRSOD',
'COD': 'BiRefNet-COD',
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
'General-legacy': 'BiRefNet-legacy'
}
# 초기 모델 로딩 (기본: General)
birefnet = AutoModelForImageSegmentation.from_pretrained(
'/'.join(('zhengpeng7', usage_to_weights_file['General'])),
trust_remote_code=True
)
birefnet.to(device)
birefnet.eval(); birefnet.half()
@spaces.GPU
def predict(images, resolution, weights_file):
assert images is not None, 'Images cannot be None.'
global birefnet
# 선택된 가중치로 모델 재로딩
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General']))
print('Using weights: {}.'.format(_weights_file))
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
birefnet.to(device)
birefnet.eval(); birefnet.half()
try:
resolution_list = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
except:
if weights_file == 'General-HR':
resolution_list = [2048, 2048]
elif weights_file == 'General-Lite-2K':
resolution_list = [2560, 1440]
else:
resolution_list = [1024, 1024]
print('Invalid resolution input. Automatically changed to default.')
# 이미지가 단일 객체인지, 리스트(배치)인지 확인
if isinstance(images, list):
tab_is_batch = True
else:
images = [images]
tab_is_batch = False
save_paths = []
save_dir = 'preds-BiRefNet'
if tab_is_batch and not os.path.exists(save_dir):
os.makedirs(save_dir)
outputs = []
for idx, image_src in enumerate(images):
if isinstance(image_src, str):
if os.path.isfile(image_src):
image_ori = Image.open(image_src)
else:
response = requests.get(image_src)
image_data = BytesIO(response.content)
image_ori = Image.open(image_data)
else:
if isinstance(image_src, np.ndarray):
image_ori = Image.fromarray(image_src)
else:
image_ori = image_src.convert('RGB')
image = image_ori.convert('RGB')
preprocessor = ImagePreprocessor(resolution=tuple(resolution_list))
image_proc = preprocessor.proc(image).unsqueeze(0)
with torch.no_grad():
preds = birefnet(image_proc.to(device).half())[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
image_masked = refine_foreground(image, pred_pil)
image_masked.putalpha(pred_pil.resize(image.size))
torch.cuda.empty_cache()
if tab_is_batch:
file_path = os.path.join(save_dir, "{}.png".format(
os.path.splitext(os.path.basename(image_src))[0] if isinstance(image_src, str) else f"img_{idx}"
))
image_masked.save(file_path)
save_paths.append(file_path)
outputs.append(image_masked)
else:
outputs = [image_masked, image_ori]
if tab_is_batch:
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir))
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
for file in save_paths:
zipf.write(file, os.path.basename(file))
return save_paths, zip_file_path
else:
# 반환값을 리스트 형태로 만들어 ImageSlider에서 표시되도록 함.
return outputs
# 예제 데이터 (이미지, URL, 배치)
examples_image = [[path, "1024x1024", "General"] for path in glob('examples/*')]
examples_text = [[url, "1024x1024", "General"] for url in ["https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"]]
examples_batch = [[file, "1024x1024", "General"] for file in glob('examples/*')]
descriptions = (
"Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n"
"The resolution used in our training was `1024x1024`, which is suggested for good results! "
"`2048x2048` is suggested for BiRefNet_HR.\n"
"Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n"
"We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access."
)
# UI 개선을 위한 CSS
css = """
body {
background: linear-gradient(135deg, #667eea, #764ba2);
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
color: #333;
margin: 0;
padding: 0;
}
.gradio-container {
background: rgba(255, 255, 255, 0.95);
border-radius: 15px;
padding: 30px 40px;
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
margin: 40px auto;
max-width: 1200px;
}
.gradio-container h1 {
color: #333;
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
}
.fillable {
width: 95% !important;
max-width: unset !important;
}
#examples_container {
margin: auto;
width: 90%;
}
#examples_row {
justify-content: center;
}
.sidebar {
background: rgba(255, 255, 255, 0.98);
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
button, .btn {
background: linear-gradient(90deg, #ff8a00, #e52e71);
border: none;
color: #fff;
padding: 12px 24px;
text-transform: uppercase;
font-weight: bold;
letter-spacing: 1px;
border-radius: 5px;
cursor: pointer;
transition: transform 0.2s ease-in-out;
}
button:hover, .btn:hover {
transform: scale(1.05);
}
"""
title = """
<h1 align="center" style="margin-bottom: 0.2em;">BiRefNet Demo for Subject Extraction</h1>
<p align="center" style="font-size:1.1em; color:#555;">
Upload an image or provide an image URL to extract the subject with high-precision segmentation.
</p>
"""
with gr.Blocks(css=css, title="BiRefNet Demo") as demo:
gr.Markdown(title)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type='pil', label='Upload an Image')
resolution_input = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
weights_radio = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
predict_btn = gr.Button("Predict")
with gr.Column(scale=2):
output_slider = ImageSlider(label="BiRefNet's Prediction", type="pil")
gr.Examples(examples=examples_image, inputs=[image_input, resolution_input, weights_radio], label="Examples")
with gr.Tab("Text"):
with gr.Row():
with gr.Column(scale=1):
image_url = gr.Textbox(label="Paste an Image URL")
resolution_input_text = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
weights_radio_text = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
predict_btn_text = gr.Button("Predict")
with gr.Column(scale=2):
output_slider_text = ImageSlider(label="BiRefNet's Prediction", type="pil")
gr.Examples(examples=examples_text, inputs=[image_url, resolution_input_text, weights_radio_text], label="Examples")
with gr.Tab("Batch"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Multiple Images", type="filepath", file_count="multiple")
resolution_input_batch = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
weights_radio_batch = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
predict_btn_batch = gr.Button("Predict")
with gr.Column(scale=2):
output_gallery = gr.Gallery(label="BiRefNet's Predictions", scale=1)
zip_output = gr.File(label="Download Masked Images")
gr.Examples(examples=examples_batch, inputs=[file_input, resolution_input_batch, weights_radio_batch], label="Examples")
with gr.Row():
gr.Markdown("<p align='center'>Model by <a href='https://huggingface.co/ZhengPeng7/BiRefNet'>ZhengPeng7/BiRefNet</a></p>")
# 각 탭의 Predict 버튼과 predict 함수 연결
predict_btn.click(
fn=predict,
inputs=[image_input, resolution_input, weights_radio],
outputs=output_slider
)
predict_btn_text.click(
fn=predict,
inputs=[image_url, resolution_input_text, weights_radio_text],
outputs=output_slider_text
)
predict_btn_batch.click(
fn=predict,
inputs=[file_input, resolution_input_batch, weights_radio_batch],
outputs=[output_gallery, zip_output]
)
if __name__ == "__main__":
demo.launch(share=False, debug=True)
|