File size: 13,074 Bytes
ec38b03
 
 
 
81b1a0e
 
 
 
 
e797135
6284dc0
 
7776a83
6284dc0
 
e797135
6284dc0
54516d1
 
5d10050
7776a83
54516d1
ec38b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b1a0e
ec38b03
 
 
 
 
53ff575
ec38b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b1a0e
621c740
 
 
7776a83
 
 
621c740
 
 
 
 
7776a83
621c740
 
 
 
 
 
 
 
 
 
7776a83
621c740
 
 
ec38b03
81b1a0e
6284dc0
81b1a0e
1592dab
81b1a0e
 
 
6284dc0
81b1a0e
 
 
ec38b03
 
 
 
 
a10635a
 
22bfe4c
e4862f5
1592dab
bcfa392
a10635a
 
 
 
f70bf31
 
a10635a
81b1a0e
ec38b03
 
 
 
 
 
 
 
 
 
 
 
7776a83
ec38b03
 
 
 
 
d967d62
e797135
741bf59
ec38b03
 
 
 
 
7776a83
b59df1c
ec38b03
741bf59
ec38b03
 
 
741bf59
ec38b03
 
741bf59
ec38b03
741bf59
ec38b03
 
 
 
741bf59
 
ec38b03
 
7776a83
ec38b03
741bf59
85f9120
53ff575
85f9120
ec38b03
 
 
 
 
741bf59
ec38b03
 
53ff575
ec38b03
 
 
 
 
 
 
 
 
 
 
53ff575
 
ec38b03
 
 
 
 
 
 
 
 
 
7776a83
 
 
ec38b03
 
 
 
 
 
 
 
 
 
8a9ec25
7776a83
 
 
ec38b03
 
 
741bf59
ec38b03
7776a83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec38b03
 
7776a83
ec38b03
7776a83
 
 
 
ec38b03
7776a83
ec38b03
7776a83
 
 
 
 
 
 
 
ec38b03
 
 
 
 
 
 
 
7776a83
 
 
 
 
 
 
 
ec38b03
 
 
 
 
 
 
 
7776a83
 
 
ec38b03
 
 
 
 
7776a83
 
 
 
ec38b03
 
 
 
 
 
 
 
 
7776a83
ec38b03
7776a83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1acca69
 
7776a83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
##########################################################
# 0. 환경 설정 및 라이브러리 임포트
##########################################################

import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces

from glob import glob
from typing import Tuple, Optional

from PIL import Image
from gradio_imageslider import ImageSlider
from torchvision import transforms
import requests
from io import BytesIO
import zipfile
import random

# Transformers
from transformers import (
    AutoConfig,
    AutoModelForImageSegmentation,
)

# 1) Config를 먼저 로드하여 tie_weights 충돌을 방지
config = AutoConfig.from_pretrained(
    "zhengpeng7/BiRefNet",          # 👉 원하는 Hugging Face 모델 Repo
    trust_remote_code=True
)

# 2) config.get_text_config 에 더미 메서드 부여 (tie_word_embeddings=False)
def dummy_get_text_config(decoder=True):
    return type("DummyTextConfig", (), {"tie_word_embeddings": False})()

config.get_text_config = dummy_get_text_config

# 3) 모델 구조만 만들기 (from_config) -> tie_weights 자동 호출 안 됨
birefnet = AutoModelForImageSegmentation.from_config(config, trust_remote_code=True)
birefnet.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
birefnet.to(device)
birefnet.half()

# 4) state_dict 로드 (가중치) - 로컬 파일 사용 예시
#    실제로는 hf_hub_download / snapshot_download 등으로 "model.safetensors"를 미리 받은 뒤 사용
print("Loading BiRefNet weights from local file: model.safetensors")
state_dict = torch.load("model.safetensors", map_location="cpu")  # 예시
missing, unexpected = birefnet.load_state_dict(state_dict, strict=False)
print("[Info] Missing keys:", missing)
print("[Info] Unexpected keys:", unexpected)
torch.cuda.empty_cache()


##########################################################
# 1. 이미지 후처리 함수들
##########################################################

def refine_foreground(image, mask, r=90):
    if mask.size != image.size:
        mask = mask.resize(image.size)
    image_np = np.array(image) / 255.0
    mask_np = np.array(mask) / 255.0
    estimated_foreground = FB_blur_fusion_foreground_estimator_2(image_np, mask_np, r=r)
    image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
    return image_masked

def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
    alpha = alpha[:, :, None]
    F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
    return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]

def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
    if isinstance(image, Image.Image):
        image = np.array(image) / 255.0
    blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
    blurred_FA = cv2.blur(F * alpha, (r, r))
    blurred_F = blurred_FA / (blurred_alpha + 1e-5)
    blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
    blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
    F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
    F = np.clip(F, 0, 1)
    return F, blurred_B


class ImagePreprocessor():
    def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
        self.transform_image = transforms.Compose([
            transforms.Resize(resolution),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])
    def proc(self, image: Image.Image) -> torch.Tensor:
        image = self.transform_image(image)
        return image


##########################################################
# 2. 예제 설정 및 유틸
##########################################################

usage_to_weights_file = {
    'General': 'BiRefNet',
    'General-HR': 'BiRefNet_HR',
    'General-Lite': 'BiRefNet_lite',
    'General-Lite-2K': 'BiRefNet_lite-2K',
    'Matting': 'BiRefNet-matting',
    'Portrait': 'BiRefNet-portrait',
    'DIS': 'BiRefNet-DIS5K',
    'HRSOD': 'BiRefNet-HRSOD',
    'COD': 'BiRefNet-COD',
    'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
    'General-legacy': 'BiRefNet-legacy'
}

examples_image = [[path, "1024x1024", "General"] for path in glob('examples/*')]
examples_text = [[url, "1024x1024", "General"] for url in [
    "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
]]
examples_batch = [[file, "1024x1024", "General"] for file in glob('examples/*')]

descriptions = (
    "Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n"
    "The resolution used in our training was `1024x1024`, which is suggested for good results! "
    "`2048x2048` is suggested for BiRefNet_HR.\n"
    "Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n"
    "We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access."
)


##########################################################
# 3. 추론 함수 (이미 로드된 birefnet 모델 사용)
##########################################################

@spaces.GPU
def predict(images, resolution, weights_file):
    """
    여기서는, 단일 birefnet 모델만 유지하고 있으며,
    weight_file을 바꾸더라도 실제로는 이미 로드된 'birefnet' 모델만 사용.
    (만약 다른 가중치를 로드하고 싶다면, 아래처럼 로컬 state_dict 교체 방식 추가 가능.)
    """
    assert images is not None, 'Images cannot be None.'

    # Resolution parse
    try:
        w, h = resolution.strip().split('x')
        w, h = int(int(w)//32*32), int(int(h)//32*32)
        resolution_list = (w, h)
    except:
        print('[WARN] Invalid resolution input. Fallback to 1024x1024.')
        resolution_list = (1024, 1024)

    # 이미지가 여러 장일 수 있으므로 리스트로 처리
    if isinstance(images, list):
        is_batch = True
        outputs, save_paths = [], []
        save_dir = 'preds-BiRefNet'
        os.makedirs(save_dir, exist_ok=True)
    else:
        images = [images]
        is_batch = False

    for idx, image_src in enumerate(images):
        # str이면 파일 경로 혹은 URL
        if isinstance(image_src, str):
            if os.path.isfile(image_src):
                image_ori = Image.open(image_src)
            else:
                resp = requests.get(image_src)
                image_ori = Image.open(BytesIO(resp.content))
        # numpy 배열이면 Pillow 변환
        elif isinstance(image_src, np.ndarray):
            image_ori = Image.fromarray(image_src)
        else:
            image_ori = image_src.convert('RGB')

        image = image_ori.convert('RGB')
        preproc = ImagePreprocessor(resolution_list)
        image_proc = preproc.proc(image).unsqueeze(0).to(device).half()

        # 실제 추론
        with torch.inference_mode():
            # 결과 맨 마지막 레이어 preds
            preds = birefnet(image_proc)[-1].sigmoid().cpu()
        pred_mask = preds[0].squeeze()

        # 후처리
        pred_pil = transforms.ToPILImage()(pred_mask)
        image_masked = refine_foreground(image, pred_pil)
        image_masked.putalpha(pred_pil.resize(image.size))

        if is_batch:
            file_name = (
                os.path.splitext(os.path.basename(image_src))[0]
                if isinstance(image_src, str)
                else f"img_{idx}"
            )
            out_path = os.path.join(save_dir, f"{file_name}.png")
            image_masked.save(out_path)
            save_paths.append(out_path)
            outputs.append(image_masked)
        else:
            outputs = [image_masked, image_ori]

        torch.cuda.empty_cache()

    # 배치라면 갤러리 + ZIP 반환
    if is_batch:
        zip_path = os.path.join(save_dir, f"{save_dir}.zip")
        with zipfile.ZipFile(zip_path, 'w') as zipf:
            for fpath in save_paths:
                zipf.write(fpath, os.path.basename(fpath))
        return (save_paths, zip_path)
    else:
        return outputs


##########################################################
# 4. Gradio UI
##########################################################

# 커스텀 CSS
css = """
body {
    background: linear-gradient(135deg, #667eea, #764ba2);
    font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    color: #333;
    margin: 0;
    padding: 0;
}
.gradio-container {
    background: rgba(255, 255, 255, 0.95);
    border-radius: 15px;
    padding: 30px 40px;
    box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
    margin: 40px auto;
    max-width: 1200px;
}
.gradio-container h1 {
    color: #333;
    text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
}
.fillable { 
    width: 95% !important; 
    max-width: unset !important;
}
#examples_container {
    margin: auto;
    width: 90%;
}
#examples_row {
    justify-content: center;
}
.sidebar {
    background: rgba(255, 255, 255, 0.98);
    border-radius: 10px;
    padding: 20px;
    box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
button, .btn {
    background: linear-gradient(90deg, #ff8a00, #e52e71);
    border: none;
    color: #fff;
    padding: 12px 24px;
    text-transform: uppercase;
    font-weight: bold;
    letter-spacing: 1px;
    border-radius: 5px;
    cursor: pointer;
    transition: transform 0.2s ease-in-out;
}
button:hover, .btn:hover {
    transform: scale(1.05);
}
"""

title_html = """
<h1 align="center" style="margin-bottom: 0.2em;">BiRefNet Demo (No Tie-Weights Crash)</h1>
<p align="center" style="font-size:1.1em; color:#555;">
    Using <code>from_config()</code> + local <code>state_dict</code> to bypass tie_weights issues
</p>
"""

with gr.Blocks(css=css, title="BiRefNet Demo") as demo:
    gr.Markdown(title_html)
    with gr.Tabs():
        # 탭 1: Image
        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    image_input = gr.Image(type='pil', label='Upload an Image')
                    resolution_input = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
                    weights_radio = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
                    predict_btn = gr.Button("Predict")
                with gr.Column(scale=2):
                    output_slider = ImageSlider(label="Result", type="pil")
            gr.Examples(
                examples=examples_image,
                inputs=[image_input, resolution_input, weights_radio],
                label="Examples"
            )

        # 탭 2: Text(URL)
        with gr.Tab("Text"):
            with gr.Row():
                with gr.Column(scale=1):
                    image_url = gr.Textbox(label="Paste an Image URL")
                    resolution_input_text = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
                    weights_radio_text = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
                    predict_btn_text = gr.Button("Predict")
                with gr.Column(scale=2):
                    output_slider_text = ImageSlider(label="Result", type="pil")
            gr.Examples(
                examples=examples_text,
                inputs=[image_url, resolution_input_text, weights_radio_text],
                label="Examples"
            )

        # 탭 3: Batch
        with gr.Tab("Batch"):
            with gr.Row():
                with gr.Column(scale=1):
                    file_input = gr.File(
                        label="Upload Multiple Images",
                        type="filepath",
                        file_count="multiple"
                    )
                    resolution_input_batch = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
                    weights_radio_batch = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
                    predict_btn_batch = gr.Button("Predict")
                with gr.Column(scale=2):
                    output_gallery = gr.Gallery(label="Results", scale=1)
                    zip_output = gr.File(label="Zip Download")
            gr.Examples(
                examples=examples_batch,
                inputs=[file_input, resolution_input_batch, weights_radio_batch],
                label="Examples"
            )

    gr.Markdown("<p align='center'>Model by <a href='https://huggingface.co/ZhengPeng7/BiRefNet'>ZhengPeng7/BiRefNet</a></p>")

    # 버튼 이벤트 연결
    predict_btn.click(
        fn=predict,
        inputs=[image_input, resolution_input, weights_radio],
        outputs=output_slider
    )
    predict_btn_text.click(
        fn=predict,
        inputs=[image_url, resolution_input_text, weights_radio_text],
        outputs=output_slider_text
    )
    predict_btn_batch.click(
        fn=predict,
        inputs=[file_input, resolution_input_batch, weights_radio_batch],
        outputs=[output_gallery, zip_output]
    )

if __name__ == "__main__":
    demo.launch(share=False, debug=True)