########################################################## # 0. 환경 설정 및 라이브러리 임포트 ########################################################## import os import cv2 import numpy as np import torch import gradio as gr import spaces from glob import glob from typing import Tuple, Optional from PIL import Image from gradio_imageslider import ImageSlider from torchvision import transforms import requests from io import BytesIO import zipfile import random # Transformers from transformers import ( AutoConfig, AutoModelForImageSegmentation, ) # 1) Config를 먼저 로드하여 tie_weights 충돌을 방지 config = AutoConfig.from_pretrained( "zhengpeng7/BiRefNet", # 👉 원하는 Hugging Face 모델 Repo trust_remote_code=True ) # 2) config.get_text_config 에 더미 메서드 부여 (tie_word_embeddings=False) def dummy_get_text_config(decoder=True): return type("DummyTextConfig", (), {"tie_word_embeddings": False})() config.get_text_config = dummy_get_text_config # 3) 모델 구조만 만들기 (from_config) -> tie_weights 자동 호출 안 됨 birefnet = AutoModelForImageSegmentation.from_config(config, trust_remote_code=True) birefnet.eval() device = "cuda" if torch.cuda.is_available() else "cpu" birefnet.to(device) birefnet.half() # 4) state_dict 로드 (가중치) - 로컬 파일 사용 예시 # 실제로는 hf_hub_download / snapshot_download 등으로 "model.safetensors"를 미리 받은 뒤 사용 print("Loading BiRefNet weights from local file: model.safetensors") state_dict = torch.load("model.safetensors", map_location="cpu") # 예시 missing, unexpected = birefnet.load_state_dict(state_dict, strict=False) print("[Info] Missing keys:", missing) print("[Info] Unexpected keys:", unexpected) torch.cuda.empty_cache() ########################################################## # 1. 이미지 후처리 함수들 ########################################################## def refine_foreground(image, mask, r=90): if mask.size != image.size: mask = mask.resize(image.size) image_np = np.array(image) / 255.0 mask_np = np.array(mask) / 255.0 estimated_foreground = FB_blur_fusion_foreground_estimator_2(image_np, mask_np, r=r) image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) return image_masked def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): alpha = alpha[:, :, None] F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r) return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): if isinstance(image, Image.Image): image = np.array(image) / 255.0 blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] blurred_FA = cv2.blur(F * alpha, (r, r)) blurred_F = blurred_FA / (blurred_alpha + 1e-5) blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B) F = np.clip(F, 0, 1) return F, blurred_B class ImagePreprocessor(): def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: self.transform_image = transforms.Compose([ transforms.Resize(resolution), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def proc(self, image: Image.Image) -> torch.Tensor: image = self.transform_image(image) return image ########################################################## # 2. 예제 설정 및 유틸 ########################################################## usage_to_weights_file = { 'General': 'BiRefNet', 'General-HR': 'BiRefNet_HR', 'General-Lite': 'BiRefNet_lite', 'General-Lite-2K': 'BiRefNet_lite-2K', 'Matting': 'BiRefNet-matting', 'Portrait': 'BiRefNet-portrait', 'DIS': 'BiRefNet-DIS5K', 'HRSOD': 'BiRefNet-HRSOD', 'COD': 'BiRefNet-COD', 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs', 'General-legacy': 'BiRefNet-legacy' } examples_image = [[path, "1024x1024", "General"] for path in glob('examples/*')] examples_text = [[url, "1024x1024", "General"] for url in [ "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" ]] examples_batch = [[file, "1024x1024", "General"] for file in glob('examples/*')] descriptions = ( "Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n" "The resolution used in our training was `1024x1024`, which is suggested for good results! " "`2048x2048` is suggested for BiRefNet_HR.\n" "Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n" "We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access." ) ########################################################## # 3. 추론 함수 (이미 로드된 birefnet 모델 사용) ########################################################## @spaces.GPU def predict(images, resolution, weights_file): """ 여기서는, 단일 birefnet 모델만 유지하고 있으며, weight_file을 바꾸더라도 실제로는 이미 로드된 'birefnet' 모델만 사용. (만약 다른 가중치를 로드하고 싶다면, 아래처럼 로컬 state_dict 교체 방식 추가 가능.) """ assert images is not None, 'Images cannot be None.' # Resolution parse try: w, h = resolution.strip().split('x') w, h = int(int(w)//32*32), int(int(h)//32*32) resolution_list = (w, h) except: print('[WARN] Invalid resolution input. Fallback to 1024x1024.') resolution_list = (1024, 1024) # 이미지가 여러 장일 수 있으므로 리스트로 처리 if isinstance(images, list): is_batch = True outputs, save_paths = [], [] save_dir = 'preds-BiRefNet' os.makedirs(save_dir, exist_ok=True) else: images = [images] is_batch = False for idx, image_src in enumerate(images): # str이면 파일 경로 혹은 URL if isinstance(image_src, str): if os.path.isfile(image_src): image_ori = Image.open(image_src) else: resp = requests.get(image_src) image_ori = Image.open(BytesIO(resp.content)) # numpy 배열이면 Pillow 변환 elif isinstance(image_src, np.ndarray): image_ori = Image.fromarray(image_src) else: image_ori = image_src.convert('RGB') image = image_ori.convert('RGB') preproc = ImagePreprocessor(resolution_list) image_proc = preproc.proc(image).unsqueeze(0).to(device).half() # 실제 추론 with torch.inference_mode(): # 결과 맨 마지막 레이어 preds preds = birefnet(image_proc)[-1].sigmoid().cpu() pred_mask = preds[0].squeeze() # 후처리 pred_pil = transforms.ToPILImage()(pred_mask) image_masked = refine_foreground(image, pred_pil) image_masked.putalpha(pred_pil.resize(image.size)) if is_batch: file_name = ( os.path.splitext(os.path.basename(image_src))[0] if isinstance(image_src, str) else f"img_{idx}" ) out_path = os.path.join(save_dir, f"{file_name}.png") image_masked.save(out_path) save_paths.append(out_path) outputs.append(image_masked) else: outputs = [image_masked, image_ori] torch.cuda.empty_cache() # 배치라면 갤러리 + ZIP 반환 if is_batch: zip_path = os.path.join(save_dir, f"{save_dir}.zip") with zipfile.ZipFile(zip_path, 'w') as zipf: for fpath in save_paths: zipf.write(fpath, os.path.basename(fpath)) return (save_paths, zip_path) else: return outputs ########################################################## # 4. Gradio UI ########################################################## # 커스텀 CSS css = """ body { background: linear-gradient(135deg, #667eea, #764ba2); font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; color: #333; margin: 0; padding: 0; } .gradio-container { background: rgba(255, 255, 255, 0.95); border-radius: 15px; padding: 30px 40px; box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3); margin: 40px auto; max-width: 1200px; } .gradio-container h1 { color: #333; text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2); } .fillable { width: 95% !important; max-width: unset !important; } #examples_container { margin: auto; width: 90%; } #examples_row { justify-content: center; } .sidebar { background: rgba(255, 255, 255, 0.98); border-radius: 10px; padding: 20px; box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2); } button, .btn { background: linear-gradient(90deg, #ff8a00, #e52e71); border: none; color: #fff; padding: 12px 24px; text-transform: uppercase; font-weight: bold; letter-spacing: 1px; border-radius: 5px; cursor: pointer; transition: transform 0.2s ease-in-out; } button:hover, .btn:hover { transform: scale(1.05); } """ title_html = """

BiRefNet Demo (No Tie-Weights Crash)

Using from_config() + local state_dict to bypass tie_weights issues

""" with gr.Blocks(css=css, title="BiRefNet Demo") as demo: gr.Markdown(title_html) with gr.Tabs(): # 탭 1: Image with gr.Tab("Image"): with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(type='pil', label='Upload an Image') resolution_input = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution") weights_radio = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights") predict_btn = gr.Button("Predict") with gr.Column(scale=2): output_slider = ImageSlider(label="Result", type="pil") gr.Examples( examples=examples_image, inputs=[image_input, resolution_input, weights_radio], label="Examples" ) # 탭 2: Text(URL) with gr.Tab("Text"): with gr.Row(): with gr.Column(scale=1): image_url = gr.Textbox(label="Paste an Image URL") resolution_input_text = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution") weights_radio_text = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights") predict_btn_text = gr.Button("Predict") with gr.Column(scale=2): output_slider_text = ImageSlider(label="Result", type="pil") gr.Examples( examples=examples_text, inputs=[image_url, resolution_input_text, weights_radio_text], label="Examples" ) # 탭 3: Batch with gr.Tab("Batch"): with gr.Row(): with gr.Column(scale=1): file_input = gr.File( label="Upload Multiple Images", type="filepath", file_count="multiple" ) resolution_input_batch = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution") weights_radio_batch = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights") predict_btn_batch = gr.Button("Predict") with gr.Column(scale=2): output_gallery = gr.Gallery(label="Results", scale=1) zip_output = gr.File(label="Zip Download") gr.Examples( examples=examples_batch, inputs=[file_input, resolution_input_batch, weights_radio_batch], label="Examples" ) gr.Markdown("

Model by ZhengPeng7/BiRefNet

") # 버튼 이벤트 연결 predict_btn.click( fn=predict, inputs=[image_input, resolution_input, weights_radio], outputs=output_slider ) predict_btn_text.click( fn=predict, inputs=[image_url, resolution_input_text, weights_radio_text], outputs=output_slider_text ) predict_btn_batch.click( fn=predict, inputs=[file_input, resolution_input_batch, weights_radio_batch], outputs=[output_gallery, zip_output] ) if __name__ == "__main__": demo.launch(share=False, debug=True)