Update app.py
Browse files
app.py
CHANGED
@@ -95,18 +95,37 @@ def download_file(url, directory=None):
|
|
95 |
|
96 |
def get_trigger_word(base_model, lora_models):
|
97 |
trigger_words = [] # Initialize an empty list to hold trigger words
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
if "lora3" in lora_models:
|
103 |
-
trigger_words.append(lora3.get('trigger_word', ''))
|
104 |
-
if "lora4" in lora_models:
|
105 |
-
trigger_words.append(lora4.get('trigger_word', ''))
|
106 |
|
107 |
# Join all trigger words with a space and wrap in a span
|
108 |
trigger_word = "<span style='color:green;'> " + " ".join(trigger_words) + " </span>"
|
109 |
return trigger_word
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
|
112 |
selected_index = evt.index
|
@@ -145,21 +164,6 @@ def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, h
|
|
145 |
gr.update()
|
146 |
)
|
147 |
|
148 |
-
def randomize_loras(selected_indices, loras_state):
|
149 |
-
if len(loras_state) < 2:
|
150 |
-
raise gr.Error("Not enough LoRAs to randomize.")
|
151 |
-
selected_indices = random.sample(range(len(loras_state)), 2)
|
152 |
-
lora1 = loras_state[selected_indices[0]]
|
153 |
-
lora2 = loras_state[selected_indices[1]]
|
154 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨ {trigger_word}"
|
155 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨ {trigger_word}"
|
156 |
-
lora_scale_1 = 0.5
|
157 |
-
lora_scale_2 = 0.5
|
158 |
-
lora_image_1 = lora1['image']
|
159 |
-
lora_image_2 = lora2['image']
|
160 |
-
random_prompt = random.choice(prompt_values)
|
161 |
-
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, random_prompt
|
162 |
-
|
163 |
def remove_lora_1(selected_indices, loras_state):
|
164 |
if len(selected_indices) >= 1:
|
165 |
selected_indices.pop(0)
|
|
|
95 |
|
96 |
def get_trigger_word(base_model, lora_models):
|
97 |
trigger_words = [] # Initialize an empty list to hold trigger words
|
98 |
+
for lora in lora_models:
|
99 |
+
trigger_word = lora.get('trigger_word', '')
|
100 |
+
if trigger_word:
|
101 |
+
trigger_words.append(trigger_word)
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# Join all trigger words with a space and wrap in a span
|
104 |
trigger_word = "<span style='color:green;'> " + " ".join(trigger_words) + " </span>"
|
105 |
return trigger_word
|
106 |
+
|
107 |
+
def randomize_loras(selected_indices, loras_state):
|
108 |
+
if len(loras_state) < 2:
|
109 |
+
raise gr.Error("Not enough LoRAs to randomize.")
|
110 |
+
|
111 |
+
selected_indices = random.sample(range(len(loras_state)), 2)
|
112 |
+
lora1 = loras_state[selected_indices[0]]
|
113 |
+
lora2 = loras_state[selected_indices[1]]
|
114 |
+
|
115 |
+
# Get trigger words for both selected LoRAs
|
116 |
+
trigger_word_1 = lora1.get('trigger_word', '')
|
117 |
+
trigger_word_2 = lora2.get('trigger_word', '')
|
118 |
+
|
119 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨ {trigger_word_1}"
|
120 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨ {trigger_word_2}"
|
121 |
+
|
122 |
+
lora_scale_1 = 0.5
|
123 |
+
lora_scale_2 = 0.5
|
124 |
+
lora_image_1 = lora1['image']
|
125 |
+
lora_image_2 = lora2['image']
|
126 |
+
random_prompt = random.choice(prompt_values)
|
127 |
+
|
128 |
+
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, random_prompt
|
129 |
|
130 |
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
|
131 |
selected_index = evt.index
|
|
|
164 |
gr.update()
|
165 |
)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
def remove_lora_1(selected_indices, loras_state):
|
168 |
if len(selected_indices) >= 1:
|
169 |
selected_indices.pop(0)
|