Keltezaa commited on
Commit
3f278f8
Β·
verified Β·
1 Parent(s): 6ad8a43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -11
app.py CHANGED
@@ -27,7 +27,7 @@ clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
27
  longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
28
  longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
29
 
30
- # Load prompts for randomization
31
  df = pd.read_csv('prompts.csv', header=None)
32
  prompt_values = df.values.flatten()
33
 
@@ -42,7 +42,13 @@ base_model = "black-forest-labs/FLUX.1-dev"
42
 
43
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
44
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
45
- pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
 
 
 
 
 
 
46
 
47
  MAX_SEED = 2**32 - 1
48
 
@@ -470,9 +476,10 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
470
  ):
471
  print("Image generated successfully.") # Debugging statement
472
  yield img
 
473
 
474
  @spaces.GPU(duration=75)
475
- def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
476
  print("run_lora function called.") # Debugging statement
477
  print(f"Inputs received - Prompt: {prompt}, CFG Scale: {cfg_scale}, Steps: {steps}, Seed: {seed}, Width: {width}, Height: {height}") # Debugging statement
478
 
@@ -498,8 +505,7 @@ def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scal
498
  # Unload previous LoRA weights
499
  with calculateDuration("Unloading LoRA"):
500
  pipe.unload_lora_weights()
501
- pipe_i2i.unload_lora_weights()
502
-
503
  print("Active adapters before loading new LoRAs:", pipe.get_active_adapters())
504
 
505
  # Load LoRA weights with respective scales
@@ -514,7 +520,7 @@ def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scal
514
  lora_path = lora['repo']
515
  weight_name = lora.get("weights")
516
  print(f"Lora Path: {lora_path}")
517
- pipe_to_use = pipe_i2i if image_input is not None else pipe
518
  pipe_to_use.load_lora_weights(
519
  lora_path,
520
  weight_name=weight_name if weight_name else None,
@@ -523,9 +529,9 @@ def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scal
523
  )
524
  print("Loaded LoRAs:", lora_names)
525
  print("Adapter weights:", lora_weights)
526
- if image_input is not None:
527
- pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
528
- else:
529
  pipe.set_adapters(lora_names, adapter_weights=lora_weights)
530
 
531
  print("Active adapters after loading new LoRAs:", pipe.get_active_adapters())
@@ -539,8 +545,8 @@ def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scal
539
  # Generate image
540
  try:
541
  if image_input is not None:
542
- #final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
543
- yield final_image, seed, gr.update(visible=False)
544
  else:
545
  image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
546
  # Consume the generator to get the final image
 
27
  longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
28
  longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
29
 
30
+ #Load prompts for randomization
31
  df = pd.read_csv('prompts.csv', header=None)
32
  prompt_values = df.values.flatten()
33
 
 
42
 
43
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
44
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
45
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1,
46
+ transformer=pipe.transformer,
47
+ text_encoder=pipe.text_encoder,
48
+ tokenizer=pipe.tokenizer,
49
+ text_encoder_2=pipe.text_encoder_2,
50
+ tokenizer_2=pipe.tokenizer_2,
51
+ ).to(device)
52
 
53
  MAX_SEED = 2**32 - 1
54
 
 
476
  ):
477
  print("Image generated successfully.") # Debugging statement
478
  yield img
479
+ return final_image
480
 
481
  @spaces.GPU(duration=75)
482
+ def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
483
  print("run_lora function called.") # Debugging statement
484
  print(f"Inputs received - Prompt: {prompt}, CFG Scale: {cfg_scale}, Steps: {steps}, Seed: {seed}, Width: {width}, Height: {height}") # Debugging statement
485
 
 
505
  # Unload previous LoRA weights
506
  with calculateDuration("Unloading LoRA"):
507
  pipe.unload_lora_weights()
508
+ ## pipe_i2i.unload_lora_weights()
 
509
  print("Active adapters before loading new LoRAs:", pipe.get_active_adapters())
510
 
511
  # Load LoRA weights with respective scales
 
520
  lora_path = lora['repo']
521
  weight_name = lora.get("weights")
522
  print(f"Lora Path: {lora_path}")
523
+ ## pipe_to_use = pipe_i2i if image_input is not None else pipe
524
  pipe_to_use.load_lora_weights(
525
  lora_path,
526
  weight_name=weight_name if weight_name else None,
 
529
  )
530
  print("Loaded LoRAs:", lora_names)
531
  print("Adapter weights:", lora_weights)
532
+ ## if image_input is not None:
533
+ ## pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
534
+ ## else:
535
  pipe.set_adapters(lora_names, adapter_weights=lora_weights)
536
 
537
  print("Active adapters after loading new LoRAs:", pipe.get_active_adapters())
 
545
  # Generate image
546
  try:
547
  if image_input is not None:
548
+ final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
549
+ yield final_image, seed, gr.update(visible=True)
550
  else:
551
  image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
552
  # Consume the generator to get the final image