Update app.py
Browse files
app.py
CHANGED
@@ -322,22 +322,22 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
|
322 |
):
|
323 |
yield img
|
324 |
|
325 |
-
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
326 |
-
pipe_i2i.to("cuda")
|
327 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
328 |
-
image_input = load_image(image_input_path)
|
329 |
-
final_image = pipe_i2i(
|
330 |
-
prompt=prompt_mash,
|
331 |
-
image=image_input,
|
332 |
-
strength=image_strength,
|
333 |
-
num_inference_steps=steps,
|
334 |
-
guidance_scale=cfg_scale,
|
335 |
-
width=width,
|
336 |
-
height=height,
|
337 |
-
generator=generator,
|
338 |
-
joint_attention_kwargs={"scale": 1.0},
|
339 |
-
output_type="pil",
|
340 |
-
).images[0]
|
341 |
return final_image
|
342 |
|
343 |
@spaces.GPU(duration=75)
|
@@ -362,7 +362,7 @@ def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scal
|
|
362 |
# Unload previous LoRA weights
|
363 |
with calculateDuration("Unloading LoRA"):
|
364 |
pipe.unload_lora_weights()
|
365 |
-
pipe_i2i.unload_lora_weights()
|
366 |
|
367 |
print(pipe.get_active_adapters())
|
368 |
# Load LoRA weights with respective scales
|
@@ -377,32 +377,32 @@ def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scal
|
|
377 |
lora_path = lora['repo']
|
378 |
weight_name = lora.get("weights")
|
379 |
print(f"Lora Path: {lora_path}")
|
380 |
-
pipe_to_use = pipe_i2i if image_input is not None else pipe
|
381 |
-
pipe_to_use.load_lora_weights(
|
382 |
-
lora_path,
|
383 |
-
weight_name=weight_name if weight_name else None,
|
384 |
-
low_cpu_mem_usage=True,
|
385 |
-
adapter_name=lora_name
|
386 |
-
)
|
387 |
-
if image_input is not None: pipe_i2i = pipe_to_use
|
388 |
-
else: pipe = pipe_to_use
|
389 |
print("Loaded LoRAs:", lora_names)
|
390 |
print("Adapter weights:", lora_weights)
|
391 |
-
if image_input is not None:
|
392 |
-
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
|
393 |
-
else:
|
394 |
-
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
|
395 |
-
print(pipe.get_active_adapters())
|
396 |
# Set random seed for reproducibility
|
397 |
with calculateDuration("Randomizing seed"):
|
398 |
if randomize_seed:
|
399 |
seed = random.randint(0, MAX_SEED)
|
400 |
|
401 |
# Generate image
|
402 |
-
if image_input is not None:
|
403 |
-
final_image = generate_image_to_image(prompt_mash, steps, cfg_scale, width, height, seed)
|
404 |
-
yield final_image, seed, gr.update(visible=False)
|
405 |
-
else:
|
406 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
407 |
# Consume the generator to get the final image
|
408 |
final_image = None
|
|
|
322 |
):
|
323 |
yield img
|
324 |
|
325 |
+
#def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
326 |
+
# pipe_i2i.to("cuda")
|
327 |
+
# generator = torch.Generator(device="cuda").manual_seed(seed)
|
328 |
+
# image_input = load_image(image_input_path)
|
329 |
+
# final_image = pipe_i2i(
|
330 |
+
# prompt=prompt_mash,
|
331 |
+
# image=image_input,
|
332 |
+
# strength=image_strength,
|
333 |
+
# num_inference_steps=steps,
|
334 |
+
# guidance_scale=cfg_scale,
|
335 |
+
# width=width,
|
336 |
+
# height=height,
|
337 |
+
# generator=generator,
|
338 |
+
# joint_attention_kwargs={"scale": 1.0},
|
339 |
+
# output_type="pil",
|
340 |
+
# ).images[0]
|
341 |
return final_image
|
342 |
|
343 |
@spaces.GPU(duration=75)
|
|
|
362 |
# Unload previous LoRA weights
|
363 |
with calculateDuration("Unloading LoRA"):
|
364 |
pipe.unload_lora_weights()
|
365 |
+
# pipe_i2i.unload_lora_weights()
|
366 |
|
367 |
print(pipe.get_active_adapters())
|
368 |
# Load LoRA weights with respective scales
|
|
|
377 |
lora_path = lora['repo']
|
378 |
weight_name = lora.get("weights")
|
379 |
print(f"Lora Path: {lora_path}")
|
380 |
+
# pipe_to_use = pipe_i2i if image_input is not None else pipe
|
381 |
+
# pipe_to_use.load_lora_weights(
|
382 |
+
# lora_path,
|
383 |
+
# weight_name=weight_name if weight_name else None,
|
384 |
+
# low_cpu_mem_usage=True,
|
385 |
+
# adapter_name=lora_name
|
386 |
+
# )
|
387 |
+
# if image_input is not None: pipe_i2i = pipe_to_use
|
388 |
+
# else: pipe = pipe_to_use
|
389 |
print("Loaded LoRAs:", lora_names)
|
390 |
print("Adapter weights:", lora_weights)
|
391 |
+
# if image_input is not None:
|
392 |
+
# pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
|
393 |
+
# else:
|
394 |
+
# pipe.set_adapters(lora_names, adapter_weights=lora_weights)
|
395 |
+
# print(pipe.get_active_adapters())
|
396 |
# Set random seed for reproducibility
|
397 |
with calculateDuration("Randomizing seed"):
|
398 |
if randomize_seed:
|
399 |
seed = random.randint(0, MAX_SEED)
|
400 |
|
401 |
# Generate image
|
402 |
+
# if image_input is not None:
|
403 |
+
# final_image = generate_image_to_image(prompt_mash, steps, cfg_scale, width, height, seed)
|
404 |
+
# yield final_image, seed, gr.update(visible=False)
|
405 |
+
# else:
|
406 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
407 |
# Consume the generator to get the final image
|
408 |
final_image = None
|