Update app.py
Browse files
app.py
CHANGED
@@ -19,70 +19,6 @@ import pandas as pd
|
|
19 |
# Disable tokenizer parallelism
|
20 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
21 |
|
22 |
-
# Summarization Function (Option 5)
|
23 |
-
def summarize_prompt(input_text, max_length=77):
|
24 |
-
"""
|
25 |
-
Summarizes the input text to fit within the CLIP token limit.
|
26 |
-
Basic implementation uses the first `max_length` tokens.
|
27 |
-
"""
|
28 |
-
summarized_text = " ".join(input_text.split()[:max_length]) # Simple summarization: First 77 words
|
29 |
-
print(f"Summarized prompt: {summarized_text}")
|
30 |
-
return summarized_text
|
31 |
-
|
32 |
-
def process_summarized_input(input_text):
|
33 |
-
"""
|
34 |
-
Prepares summarized text for CLIP processing.
|
35 |
-
"""
|
36 |
-
summarized_text = summarize_prompt(input_text, max_length=77)
|
37 |
-
inputs = clip_processor(text=summarized_text, return_tensors="pt", padding=True, truncation=True, max_length=77)
|
38 |
-
return inputs
|
39 |
-
|
40 |
-
def split_prompt_with_overlap(prompt, chunk_size=77, overlap=10):
|
41 |
-
tokens = clip_processor.tokenizer(prompt, return_tensors="pt")["input_ids"][0]
|
42 |
-
chunks = [
|
43 |
-
tokens[i:max(i + chunk_size, len(tokens))]
|
44 |
-
for i in range(0, len(tokens), chunk_size - overlap)
|
45 |
-
]
|
46 |
-
return chunks
|
47 |
-
|
48 |
-
def split_prompt(prompt, chunk_size=77):
|
49 |
-
"""Splits a long prompt into chunks of the specified token size."""
|
50 |
-
tokens = clip_processor.tokenizer(prompt, return_tensors="pt")["input_ids"][0]
|
51 |
-
chunks = [tokens[i:i + chunk_size] for i in range(0, len(tokens), chunk_size)]
|
52 |
-
return chunks
|
53 |
-
|
54 |
-
def process_clip_chunks(input_text):
|
55 |
-
"""
|
56 |
-
Tokenizes and processes a long input text in chunks for CLIP.
|
57 |
-
Each chunk respects the model's 77-token limit.
|
58 |
-
"""
|
59 |
-
chunks = split_prompt(input_text)
|
60 |
-
processed_chunks = []
|
61 |
-
for chunk in chunks:
|
62 |
-
chunk_text = clip_processor.tokenizer.decode(chunk, skip_special_tokens=True)
|
63 |
-
inputs = clip_processor(text=chunk_text, return_tensors="pt", padding=True, truncation=True, max_length=77)
|
64 |
-
processed_chunks.append(inputs)
|
65 |
-
return processed_chunks # Return processed chunks for downstream usage
|
66 |
-
|
67 |
-
def preprocess_prompt(input_text, max_clip_tokens=77):
|
68 |
-
"""
|
69 |
-
Preprocess the input prompt based on its length:
|
70 |
-
- If the prompt is <= max_clip_tokens, summarize it.
|
71 |
-
- If the prompt is > max_clip_tokens, split and process it.
|
72 |
-
"""
|
73 |
-
# Tokenize the prompt to determine its token length
|
74 |
-
tokens = clip_processor.tokenizer(input_text, return_tensors="pt")["input_ids"][0]
|
75 |
-
token_count = len(tokens)
|
76 |
-
|
77 |
-
if token_count <= max_clip_tokens:
|
78 |
-
# Use summarization for shorter prompts
|
79 |
-
print("Using summarization (Option 5) as the prompt is short.")
|
80 |
-
return process_summarized_input(input_text)
|
81 |
-
else:
|
82 |
-
# Use split-and-process for longer prompts
|
83 |
-
print("Using chunking (Option 3) as the prompt exceeds 77 tokens.")
|
84 |
-
return process_clip_chunks(input_text)
|
85 |
-
|
86 |
# Initialize the CLIP tokenizer and model
|
87 |
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16")
|
88 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
@@ -92,10 +28,6 @@ clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
|
|
92 |
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
93 |
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
94 |
|
95 |
-
# Example usage
|
96 |
-
input_text = "Your long prompt goes here..."
|
97 |
-
inputs = preprocess_prompt(input_text)
|
98 |
-
|
99 |
# Load prompts for randomization
|
100 |
df = pd.read_csv('prompts.csv', header=None)
|
101 |
prompt_values = df.values.flatten()
|
@@ -113,26 +45,19 @@ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).
|
|
113 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
114 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
115 |
|
116 |
-
|
117 |
-
# Gradio interface function
|
118 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
119 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
120 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
121 |
-
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
122 |
-
base_model,
|
123 |
-
vae=good_vae,
|
124 |
-
transformer=pipe.transformer,
|
125 |
-
text_encoder=pipe.text_encoder,
|
126 |
-
tokenizer=pipe.tokenizer,
|
127 |
-
text_encoder_2=pipe.text_encoder_2,
|
128 |
-
tokenizer_2=pipe.tokenizer_2,
|
129 |
-
torch_dtype=dtype
|
130 |
-
)
|
131 |
-
|
132 |
MAX_SEED = 2**32 - 1
|
133 |
|
134 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
class calculateDuration:
|
137 |
def __init__(self, activity_name=""):
|
138 |
self.activity_name = activity_name
|
|
|
19 |
# Disable tokenizer parallelism
|
20 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Initialize the CLIP tokenizer and model
|
23 |
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16")
|
24 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
|
|
28 |
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
29 |
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
30 |
|
|
|
|
|
|
|
|
|
31 |
# Load prompts for randomization
|
32 |
df = pd.read_csv('prompts.csv', header=None)
|
33 |
prompt_values = df.values.flatten()
|
|
|
45 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
46 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
MAX_SEED = 2**32 - 1
|
49 |
|
50 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
51 |
|
52 |
+
def process_input(input_text):
|
53 |
+
# Tokenize and truncate input
|
54 |
+
inputs = clip_processor(text=input_text, return_tensors="pt", padding=True, truncation=True, max_length=77)
|
55 |
+
return inputs
|
56 |
+
|
57 |
+
# Example usage
|
58 |
+
input_text = "Your long prompt goes here..."
|
59 |
+
inputs = process_input(input_text)
|
60 |
+
|
61 |
class calculateDuration:
|
62 |
def __init__(self, activity_name=""):
|
63 |
self.activity_name = activity_name
|