Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,34 @@ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPip
|
|
9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
from diffusers.utils import load_image
|
11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
|
|
12 |
import copy
|
13 |
import random
|
14 |
import time
|
15 |
import requests
|
16 |
import pandas as pd
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
#Load prompts for randomization
|
19 |
df = pd.read_csv('prompts.csv', header=None)
|
20 |
prompt_values = df.values.flatten()
|
|
|
9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
from diffusers.utils import load_image
|
11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
12 |
+
from transformers import AutoModelForCausalLM, CLIPTokenizer, CLIPProcessor, CLIPModel, LongformerTokenizer, LongformerModel
|
13 |
import copy
|
14 |
import random
|
15 |
import time
|
16 |
import requests
|
17 |
import pandas as pd
|
18 |
|
19 |
+
# Disable tokenizer parallelism
|
20 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
21 |
+
|
22 |
+
# Initialize the CLIP tokenizer and model
|
23 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16")
|
24 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
25 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
|
26 |
+
|
27 |
+
# Initialize the Longformer tokenizer and model
|
28 |
+
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
29 |
+
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
30 |
+
|
31 |
+
def process_input(input_text):
|
32 |
+
# Tokenize and truncate input
|
33 |
+
inputs = clip_processor(text=input_text, return_tensors="pt", padding=True, truncation=True, max_length=77)
|
34 |
+
return inputs
|
35 |
+
|
36 |
+
# Example usage
|
37 |
+
input_text = "Your long prompt goes here..."
|
38 |
+
inputs = process_input(input_text)
|
39 |
+
|
40 |
#Load prompts for randomization
|
41 |
df = pd.read_csv('prompts.csv', header=None)
|
42 |
prompt_values = df.values.flatten()
|