import os import gradio as gr import json import logging import torch from PIL import Image import spaces from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download from transformers import AutoModelForCausalLM, CLIPTokenizer, CLIPProcessor, CLIPModel, LongformerTokenizer, LongformerModel import copy import random import time import requests import pandas as pd # Disable tokenizer parallelism os.environ["TOKENIZERS_PARALLELISM"] = "false" # Initialize the CLIP tokenizer and model clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16") clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16") # Initialize the Longformer tokenizer and model longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096") #Load prompts for randomization df = pd.read_csv('prompts.csv', header=None) prompt_values = df.values.flatten() # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) # Initialize the base model dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "sayakpaul/FLUX.1-merged" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) pipe_i2i = AutoPipelineForImage2Image.from_pretrained( base_model, vae=good_vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype ) MAX_SEED = 2**32 - 1 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) def process_input(input_text): # Tokenize and truncate input #inputs = clip_processor(text=input_text, return_tensors="pt", padding=True, truncation=True, max_length=77) #return inputs #Change clip_processor to longformer inputs = longformer_tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=4096) return inputs # Example usage input_text = "Your long prompt goes here..." inputs = process_input(input_text) class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def download_file(url, directory=None): if directory is None: directory = os.getcwd() # Use current working directory if not specified # Get the filename from the URL filename = url.split('/')[-1] # Full path for the downloaded file filepath = os.path.join(directory, filename) # Download the file response = requests.get(url) response.raise_for_status() # Raise an exception for bad status codes # Write the content to the file with open(filepath, 'wb') as file: file.write(response.content) return filepath def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height): selected_index = evt.index selected_indices = selected_indices or [] if selected_index in selected_indices: selected_indices.remove(selected_index) else: if len(selected_indices) < 4: selected_indices.append(selected_index) else: gr.Warning("You can select up to 4 LoRAs, remove one to select a new one.") return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update(), gr.update() selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] if selected_indices: last_selected_lora = loras_state[selected_indices[-1]] new_placeholder = f"Type a prompt for {last_selected_lora['title']}" else: new_placeholder = "Type a prompt after selecting a LoRA" return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, width, height, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def remove_lora_1(selected_indices, loras_state): if len(selected_indices) >= 1: selected_indices.pop(0) selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def remove_lora_2(selected_indices, loras_state): if len(selected_indices) >= 2: selected_indices.pop(1) selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def remove_lora_3(selected_indices, loras_state): if len(selected_indices) >= 3: selected_indices.pop(2) selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def remove_lora_4(selected_indices, loras_state): if len(selected_indices) >= 4: selected_indices.pop(3) selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### Celebrity Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def randomize_loras(selected_indices, loras_state): if len(loras_state) < 2: raise gr.Error("Not enough LoRAs to randomize.") selected_indices = random.sample(range(len(loras_state)), 2) lora1 = loras_state[selected_indices[0]] lora2 = loras_state[selected_indices[1]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_image_1 = lora1['image'] lora_image_2 = lora2['image'] random_prompt = random.choice(prompt_values) return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, random_prompt def add_custom_lora(custom_lora, selected_indices, current_loras, gallery, request: gr.Request = None): if not custom_lora: return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() try: # Retrieve user token if running in Spaces user_token = request.headers.get("Authorization", "").replace("Bearer ", "") if request else None # Check and load custom LoRA title, repo, path, trigger_word, image = check_custom_model(custom_lora, token=user_token) print(f"Loaded custom LoRA: {repo}") # Check if the LoRA already exists in the current list existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None) if existing_item_index is None: # Download if a direct .safetensors URL if repo.endswith(".safetensors") and repo.startswith("http"): repo = download_file(repo) # Add the new LoRA new_item = { "image": image or "/home/user/app/custom.png", "title": title, "repo": repo, "weights": path, "trigger_word": trigger_word, } print(f"New LoRA: {new_item}") existing_item_index = len(current_loras) current_loras.append(new_item) # Update gallery items gallery_items = [(item["image"], item["title"]) for item in current_loras] # Update selected indices if len(selected_indices) < 4: selected_indices.append(existing_item_index) else: raise gr.Error("You can select up to 4 LoRAs. Please remove one to add a new one.") # Update selection info and images selected_info = [f"Select a LoRA {i + 1}" for i in range(4)] lora_images = [None] * 4 lora_scales = [1.15, 1.15, 0.65, 0.65] for idx, sel_idx in enumerate(selected_indices[:4]): lora = current_loras[sel_idx] selected_info[idx] = f"### LoRA {idx + 1} Selected: {lora['title']} ✨" lora_images[idx] = lora.get("image") print("Finished adding custom LoRA") return ( current_loras, gr.update(value=gallery_items), *selected_info, selected_indices, *lora_scales, *lora_images, ) except Exception as e: print(e) return (current_loras, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),gr.update(), ) def process_custom_lora(custom_lora, request: gr.Request): # Extract user token from request headers user_token = request.headers.get("Authorization", "").replace("Bearer ", "") if not user_token: raise gr.Error("User is not logged in. Please log in to use this feature.") return check_custom_model(custom_lora, token=user_token) def remove_custom_lora(selected_indices, current_loras, gallery): if current_loras: custom_lora_repo = current_loras[-1]['repo'] # Remove from loras list current_loras = current_loras[:-1] # Remove from selected_indices if selected custom_lora_index = len(current_loras) if custom_lora_index in selected_indices: selected_indices.remove(custom_lora_index) # Update gallery gallery_items = [(item["image"], item["title"]) for item in current_loras] # Update selected_info and images selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return (current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4) def generate_image(prompt, steps, seed, cfg_scale, width, height, progress): print("Generating image...") pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": 1.0}, output_type="pil", good_vae=good_vae, ): # Yielding a tuple with image, seed, and a progress update yield img, seed, f"Generated image {img} with seed {seed}" return img @spaces.GPU(duration=75) def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)): if not selected_indices: raise gr.Error("You must select at least one LoRA before proceeding.") selected_loras = [loras_state[idx] for idx in selected_indices] # Print the selected LoRAs print("Running with the following LoRAs:") for lora in selected_loras: print(f"- {lora['title']} from {lora['repo']} with scale {lora_scale_1 if selected_loras.index(lora) == 0 else lora_scale_2}") # Build the prompt with trigger words prepends = [] appends = [] for lora in selected_loras: trigger_word = lora.get('trigger_word', '') if trigger_word: if lora.get("trigger_position") == "prepend": prepends.append(trigger_word) else: appends.append(trigger_word) prompt_mash = " ".join(prepends + [prompt] + appends) print("Prompt Mash: ", prompt_mash) print("--Seed--:", seed) # Unload previous LoRA weights with calculateDuration("Unloading LoRA"): pipe.unload_lora_weights() print(pipe.get_active_adapters()) # Load LoRA weights lora_names = [] lora_weights = [] with calculateDuration("Loading LoRA weights"): for idx, lora in enumerate(selected_loras): lora_name = f"lora_{idx}" lora_names.append(lora_name) print(f"Lora Name: {lora_name}") lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2) pipe.load_lora_weights( lora['repo'], weight_name=lora.get("weights"), low_cpu_mem_usage=True, adapter_name=lora_name, ) print("Base Model:", base_model) print("Loaded LoRAs:", selected_indices) print("Adapter weights:", lora_weights) pipe.set_adapters(lora_names, adapter_weights=lora_weights) # Set random seed if required if randomize_seed: seed = random.randint(0, MAX_SEED) # Generate image image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress) step_counter = 0 for image, seed, progress_update in image_generator: step_counter += 1 progress_bar = f'
' yield image, seed, gr.update(value=progress_bar, visible=True) run_lora.zerogpu = True def get_huggingface_safetensors(link, token=None): split_link = link.split("/") if len(split_link) == 2: model_card = ModelCard.load(link, use_auth_token=token) base_model = model_card.data.get("base_model") print(f"Base model: {base_model}") if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: raise Exception("Not a FLUX LoRA!") image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) trigger_word = model_card.data.get("instance_prompt", "") image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None fs = HfFileSystem(token=token) safetensors_name = None try: list_of_files = fs.ls(link, detail=False) for file in list_of_files: if file.endswith(".safetensors"): safetensors_name = file.split("/")[-1] if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): image_elements = file.split("/") image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" except Exception as e: print(e) raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA") if not safetensors_name: raise gr.Error("No *.safetensors file found in the repository") return split_link[1], link, safetensors_name, trigger_word, image_url else: raise gr.Error("Invalid Hugging Face repository link") def check_custom_model(link, token=None): if link.endswith(".safetensors"): title = os.path.basename(link) repo = link path = None trigger_word = "" image_url = None return title, repo, path, trigger_word, image_url elif link.startswith("https://"): if "huggingface.co" in link: link_split = link.split("huggingface.co/") return get_huggingface_safetensors(link_split[1], token=token) else: raise Exception("Unsupported URL") else: return get_huggingface_safetensors(link, token=token) def update_history(new_image, history): """Updates the history gallery with the new image.""" if history is None: history = [] history.insert(0, new_image) return history css = ''' #gen_btn{height: 100%} #title{text-align: center} #title h1{font-size: 2em; display:inline-flex; align-items:center} #title img{width: 100px; margin-right: 0.25em} #gallery .grid-wrap{height: 5vh} #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} .custom_lora_card{margin-bottom: 1em} .card_internal{display: flex;height: 100px;margin-top: .5em} .card_internal img{margin-right: 1em} .styler{--form-gap-width: 0px !important} #progress{height:30px} #progress .generating{display:none} .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} #component-8, .button_total{height: 100%; align-self: stretch;} #loaded_loras [data-testid="block-info"]{font-size:80%} #custom_lora_structure{background: var(--block-background-fill)} #custom_lora_btn{margin-top: auto;margin-bottom: 11px} #random_btn{font-size: 300%} #component-11{align-self: stretch;} ''' font=[gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"] with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(128, 256)) as app: title = gr.HTML( """

LoRACelebrity_LoRa_Mix

""", elem_id="title", ) loras_state = gr.State(loras) selected_indices = gr.State([]) trigger_word_display = gr.Markdown("", elem_id="trigger_word") with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") with gr.Row(elem_id="loaded_loras"): with gr.Column(scale=8): with gr.Row(): with gr.Column(scale=0, min_width=50): lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) with gr.Column(scale=3, min_width=100): selected_info_1 = gr.Markdown("Select a LoRA 1") with gr.Column(scale=5, min_width=50): lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.05, value=0.5) with gr.Row(): remove_button_1 = gr.Button("Remove", size="sm") with gr.Column(scale=8): with gr.Row(): with gr.Column(scale=0, min_width=50): lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) with gr.Column(scale=3, min_width=100): selected_info_2 = gr.Markdown("Select a LoRA 2") with gr.Column(scale=5, min_width=50): lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.05, value=0.5) with gr.Row(): remove_button_2 = gr.Button("Remove", size="sm") with gr.Column(scale=1,min_width=50): randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn") with gr.Row(elem_id="loaded_loras"): with gr.Column(scale=8): with gr.Row(): with gr.Column(scale=0, min_width=50): lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) with gr.Column(scale=3, min_width=100): selected_info_3 = gr.Markdown("Select a LoRA 3") with gr.Column(scale=5, min_width=50): lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.05, value=0.5) with gr.Row(): remove_button_3 = gr.Button("Remove", size="sm") with gr.Column(scale=8): with gr.Row(): with gr.Column(scale=0, min_width=50): lora_image_4 = gr.Image(label="LoRA 4 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) with gr.Column(scale=3, min_width=100): selected_info_4 = gr.Markdown("Select a LoRA 4") with gr.Column(scale=5, min_width=150): lora_scale_4 = gr.Slider(label="LoRA 4 Scale", minimum=0, maximum=3, step=0.05, value=0.5) with gr.Row(): remove_button_4 = gr.Button("Remove", size="sm") with gr.Row(): with gr.Accordion("Advanced Settings", open=True): #with gr.Row(): # input_image = gr.Image(label="Input image", type="filepath", show_share_button=False) # image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) with gr.Column(): with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): randomize_seed = gr.Checkbox(True, label="Randomize seed") seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) with gr.Row(): with gr.Column(scale=3): generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"]) with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(elem_id="custom_lora_structure"): custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150) add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150) remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False) gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") gallery = gr.Gallery( [(item["image"], item["title"]) for item in loras], label="Or pick from the gallery", allow_preview=False, columns=5, elem_id="gallery", show_share_button=False, interactive=False ) with gr.Column(): progress_bar = gr.Markdown(elem_id="progress", visible=False) result = gr.Image(label="Generated Image", interactive=False, show_share_button=False) # with gr.Accordion("History", open=False): # history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False) gallery.select( update_selection, inputs=[selected_indices, loras_state, width, height], outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, width, height, lora_image_1, lora_image_2, lora_image_3, lora_image_4]) remove_button_1.click( remove_lora_1, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] ) remove_button_2.click( remove_lora_2, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] ) remove_button_3.click( remove_lora_3, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] ) remove_button_4.click( remove_lora_4, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] ) randomize_button.click( randomize_loras, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, prompt] ) add_custom_lora_button.click( add_custom_lora, inputs=[custom_lora, selected_indices, loras_state, gallery], outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] ) remove_custom_lora_button.click( remove_custom_lora, inputs=[selected_indices, loras_state, gallery], outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] ) gr.on( triggers=[generate_button.click, prompt.submit], fn=run_lora, inputs=[prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, randomize_seed, seed, width, height, loras_state], outputs=[result, seed, progress_bar] )#.then( # fn=lambda x, history: update_history(x, history), # inputs=[result, history_gallery], # outputs=history_gallery, #) app.queue() app.launch()