import os import gradio as gr import json import logging import torch from PIL import Image import spaces from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download from transformers import AutoModelForCausalLM, CLIPTokenizer, CLIPProcessor, CLIPModel, LongformerTokenizer, LongformerModel import copy import random import time import requests import pandas as pd # Disable tokenizer parallelism os.environ["TOKENIZERS_PARALLELISM"] = "false" # Initialize the CLIP tokenizer and model clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16") clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16") # Initialize the Longformer tokenizer and model longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096") #Load prompts for randomization df = pd.read_csv('prompts.csv', header=None) prompt_values = df.values.flatten() # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) # Initialize the base model dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "sayakpaul/FLUX.1-merged" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) pipe_i2i = AutoPipelineForImage2Image.from_pretrained( base_model, vae=good_vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype ) MAX_SEED = 2**32 - 1 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) def process_input(input_text): # Tokenize and truncate input #inputs = clip_processor(text=input_text, return_tensors="pt", padding=True, truncation=True, max_length=77) #return inputs #Change clip_processor to longformer inputs = longformer_tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=4096) return inputs # Example usage input_text = "Your long prompt goes here..." inputs = process_input(input_text) class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def download_file(url, directory=None): if directory is None: directory = os.getcwd() # Use current working directory if not specified # Get the filename from the URL filename = url.split('/')[-1] # Full path for the downloaded file filepath = os.path.join(directory, filename) # Download the file response = requests.get(url) response.raise_for_status() # Raise an exception for bad status codes # Write the content to the file with open(filepath, 'wb') as file: file.write(response.content) return filepath def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height): selected_index = evt.index selected_indices = selected_indices or [] if selected_index in selected_indices: selected_indices.remove(selected_index) else: if len(selected_indices) < 4: selected_indices.append(selected_index) else: gr.Warning("You can select up to 4 LoRAs, remove one to select a new one.") return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update(), gr.update() selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] if selected_indices: last_selected_lora = loras_state[selected_indices[-1]] new_placeholder = f"Type a prompt for {last_selected_lora['title']}" else: new_placeholder = "Type a prompt after selecting a LoRA" return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, width, height, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def remove_lora_1(selected_indices, loras_state): if len(selected_indices) >= 1: selected_indices.pop(0) selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def remove_lora_2(selected_indices, loras_state): if len(selected_indices) >= 2: selected_indices.pop(1) selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def remove_lora_3(selected_indices, loras_state): if len(selected_indices) >= 3: selected_indices.pop(2) selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def remove_lora_4(selected_indices, loras_state): if len(selected_indices) >= 4: selected_indices.pop(3) selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### Celebrity Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 def randomize_loras(selected_indices, loras_state): if len(loras_state) < 2: raise gr.Error("Not enough LoRAs to randomize.") selected_indices = random.sample(range(len(loras_state)), 2) lora1 = loras_state[selected_indices[0]] lora2 = loras_state[selected_indices[1]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_image_1 = lora1['image'] lora_image_2 = lora2['image'] random_prompt = random.choice(prompt_values) return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, random_prompt def add_custom_lora(custom_lora, selected_indices, current_loras, gallery, request: gr.Request = None): if not custom_lora: return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() try: # Retrieve user token if running in Spaces user_token = request.headers.get("Authorization", "").replace("Bearer ", "") if request else None # Check and load custom LoRA title, repo, path, trigger_word, image = check_custom_model(custom_lora, token=user_token) print(f"Loaded custom LoRA: {repo}") # Check if the LoRA already exists in the current list existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None) if existing_item_index is None: # Download if a direct .safetensors URL if repo.endswith(".safetensors") and repo.startswith("http"): repo = download_file(repo) # Add the new LoRA new_item = { "image": image or "/home/user/app/custom.png", "title": title, "repo": repo, "weights": path, "trigger_word": trigger_word, } print(f"New LoRA: {new_item}") existing_item_index = len(current_loras) current_loras.append(new_item) # Update gallery items gallery_items = [(item["image"], item["title"]) for item in current_loras] # Update selected indices if len(selected_indices) < 4: selected_indices.append(existing_item_index) else: raise gr.Error("You can select up to 4 LoRAs. Please remove one to add a new one.") # Update selection info and images selected_info = [f"Select a LoRA {i + 1}" for i in range(4)] lora_images = [None] * 4 lora_scales = [1.15, 1.15, 0.65, 0.65] for idx, sel_idx in enumerate(selected_indices[:4]): lora = current_loras[sel_idx] selected_info[idx] = f"### LoRA {idx + 1} Selected: {lora['title']} ✨" lora_images[idx] = lora.get("image") print("Finished adding custom LoRA") return ( current_loras, gr.update(value=gallery_items), *selected_info, selected_indices, *lora_scales, *lora_images, ) except Exception as e: print(e) return (current_loras, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),gr.update(), ) def process_custom_lora(custom_lora, request: gr.Request): # Extract user token from request headers user_token = request.headers.get("Authorization", "").replace("Bearer ", "") if not user_token: raise gr.Error("User is not logged in. Please log in to use this feature.") return check_custom_model(custom_lora, token=user_token) def remove_custom_lora(selected_indices, current_loras, gallery): if current_loras: custom_lora_repo = current_loras[-1]['repo'] # Remove from loras list current_loras = current_loras[:-1] # Remove from selected_indices if selected custom_lora_index = len(current_loras) if custom_lora_index in selected_indices: selected_indices.remove(custom_lora_index) # Update gallery gallery_items = [(item["image"], item["title"]) for item in current_loras] # Update selected_info and images selected_info_1 = "Select a Celebrity as LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" selected_info_4 = "Select a LoRA 4" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 0.65 lora_scale_4 = 0.65 lora_image_1 = None lora_image_2 = None lora_image_3 = None lora_image_4 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if len(selected_indices) >= 4: lora4 = loras_state[selected_indices[3]] selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" lora_image_4 = lora4['image'] return (current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4) def generate_image(prompt, steps, seed, cfg_scale, width, height, progress): print("Generating image...") pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": 1.0}, output_type="pil", good_vae=good_vae, ): # Yielding a tuple with image, seed, and a progress update yield img, seed, f"Generated image {img} with seed {seed}" return img @spaces.GPU(duration=75) def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)): if not selected_indices: raise gr.Error("You must select at least one LoRA before proceeding.") selected_loras = [loras_state[idx] for idx in selected_indices] # Print the selected LoRAs print("Running with the following LoRAs:") for lora in selected_loras: print(f"- {lora['title']} from {lora['repo']} with scale {lora_scale_1 if selected_loras.index(lora) == 0 else lora_scale_2}") # Build the prompt with trigger words prepends = [] appends = [] for lora in selected_loras: trigger_word = lora.get('trigger_word', '') if trigger_word: if lora.get("trigger_position") == "prepend": prepends.append(trigger_word) else: appends.append(trigger_word) prompt_mash = " ".join(prepends + [prompt] + appends) print("Prompt Mash: ", prompt_mash) print("--Seed--:", seed) # Unload previous LoRA weights with calculateDuration("Unloading LoRA"): pipe.unload_lora_weights() print(pipe.get_active_adapters()) # Load LoRA weights lora_names = [] lora_weights = [] with calculateDuration("Loading LoRA weights"): for idx, lora in enumerate(selected_loras): lora_name = f"lora_{idx}" lora_names.append(lora_name) print(f"Lora Name: {lora_name}") lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2) pipe.load_lora_weights( lora['repo'], weight_name=lora.get("weights"), low_cpu_mem_usage=True, adapter_name=lora_name, ) print("Base Model:", base_model) print("Loaded LoRAs:", selected_indices) print("Adapter weights:", lora_weights) pipe.set_adapters(lora_names, adapter_weights=lora_weights) # Set random seed if required if randomize_seed: seed = random.randint(0, MAX_SEED) # Generate image image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress) step_counter = 0 for image, seed, progress_update in image_generator: step_counter += 1 progress_bar = f'