Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,738 Bytes
5e60b44 da4d4dd 5e60b44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import pipeline
import replicate
import logging
import requests
from pathlib import Path
import cv2
import numpy as np
import sys
import io
# 로깅 설정
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
# API 설정
CATBOX_USER_HASH = "e7a96fc68dd4c7d2954040cd5"
REPLICATE_API_TOKEN = os.getenv("API_KEY")
# 환경 변수 설정
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
# CUDA 설정
torch.backends.cuda.matmul.allow_tf32 = True
# 번역기 초기화
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
def check_api_key():
"""API 키 확인 및 설정"""
if not REPLICATE_API_TOKEN:
logger.error("Replicate API key not found")
return False
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
logger.info("Replicate API token set successfully")
return True
def translate_if_korean(text):
"""한글이 포함된 경우 영어로 번역"""
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):
translation = translator(text)[0]['translation_text']
return translation
return text
def filter_prompt(prompt):
inappropriate_keywords = [
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
"erotic", "sensual", "seductive", "provocative", "intimate",
"violence", "gore", "blood", "death", "kill", "murder", "torture",
"drug", "suicide", "abuse", "hate", "discrimination"
]
prompt_lower = prompt.lower()
for keyword in inappropriate_keywords:
if keyword in prompt_lower:
return False, "부적절한 내용이 포함된 프롬프트입니다."
return True, prompt
def process_prompt(prompt):
"""프롬프트 전처리 (번역 및 필터링)"""
translated_prompt = translate_if_korean(prompt)
is_safe, filtered_prompt = filter_prompt(translated_prompt)
return is_safe, filtered_prompt
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
def upload_to_catbox(image_path):
"""catbox.moe API를 사용하여 이미지 업로드"""
try:
logger.info(f"Preparing to upload image: {image_path}")
url = "https://catbox.moe/user/api.php"
file_extension = Path(image_path).suffix.lower()
if file_extension not in ['.jpg', '.jpeg', '.png', '.gif']:
logger.error(f"Unsupported file type: {file_extension}")
return None
files = {
'fileToUpload': (
os.path.basename(image_path),
open(image_path, 'rb'),
'image/jpeg' if file_extension in ['.jpg', '.jpeg'] else 'image/png'
)
}
data = {
'reqtype': 'fileupload',
'userhash': CATBOX_USER_HASH
}
response = requests.post(url, files=files, data=data)
if response.status_code == 200 and response.text.startswith('http'):
image_url = response.text
logger.info(f"Image uploaded successfully: {image_url}")
return image_url
else:
raise Exception(f"Upload failed: {response.text}")
except Exception as e:
logger.error(f"Image upload error: {str(e)}")
return None
def add_watermark(video_path):
"""OpenCV를 사용하여 비디오에 워터마크 추가"""
try:
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
text = "GiniGEN.AI"
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = height * 0.05 / 30
thickness = 2
color = (255, 255, 255)
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
margin = int(height * 0.02)
x_pos = width - text_width - margin
y_pos = height - margin
output_path = "watermarked_output.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
out.write(frame)
cap.release()
out.release()
return output_path
except Exception as e:
logger.error(f"Error adding watermark: {str(e)}")
return video_path
def generate_video(image, prompt):
logger.info("Starting video generation")
try:
if not check_api_key():
return "Replicate API key not properly configured"
if not image:
logger.error("No image provided")
return "Please upload an image"
image_url = upload_to_catbox(image)
if not image_url:
return "Failed to upload image"
input_data = {
"prompt": prompt,
"first_frame_image": image_url
}
try:
replicate.Client(api_token=REPLICATE_API_TOKEN)
output = replicate.run(
"minimax/video-01-live",
input=input_data
)
temp_file = "temp_output.mp4"
if hasattr(output, 'read'):
with open(temp_file, "wb") as file:
file.write(output.read())
elif isinstance(output, str):
response = requests.get(output)
with open(temp_file, "wb") as file:
file.write(response.content)
final_video = add_watermark(temp_file)
return final_video
except Exception as api_error:
logger.error(f"API call failed: {str(api_error)}")
return f"API call failed: {str(api_error)}"
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
return f"Unexpected error: {str(e)}"
def save_image(image):
"""Save the generated image temporarily"""
try:
# 임시 디렉토리에 저장
temp_dir = "temp"
if not os.path.exists(temp_dir):
os.makedirs(temp_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filepath = os.path.join(temp_dir, f"temp_{timestamp}.png")
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.mode != 'RGB':
image = image.convert('RGB')
image.save(filepath, format='PNG', optimize=True, quality=100)
return filepath
except Exception as e:
logger.error(f"Error in save_image: {str(e)}")
return None
css = """
footer {
visibility: hidden;
}
"""
# Gradio 인터페이스 생성
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
gr.HTML('<div class="title">🎥 Dokdo✨ Digital Odyssey from Korea, Designing Original</div>')
gr.HTML('<div class="title">😄 Enjoy the amazing free video creation and enhancement services!</div>')
with gr.Tabs():
with gr.Tab("Image Generation"):
with gr.Row():
with gr.Column(scale=3):
img_prompt = gr.Textbox(
label="Image Description",
placeholder="이미지 설명을 입력하세요... (한글 입력 가능)",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
seed = gr.Number(
label="Seed",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("🎲 Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"✨ Generate Image",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4):
img_output = gr.Image(
label="Generated Image",
type="pil",
format="png"
)
with gr.Tab("Amazing Video Generation"):
with gr.Row():
with gr.Column(scale=3):
video_prompt = gr.Textbox(
label="Video Description",
placeholder="비디오 설명을 입력하세요... (한글 입력 가능)",
lines=3
)
upload_image = gr.Image(
type="filepath",
label="Upload First Frame Image"
)
video_generate_btn = gr.Button(
"🎬 Generate Video",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4):
video_output = gr.Video(label="Generated Video")
@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
is_safe, translated_prompt = process_prompt(prompt)
if not is_safe:
gr.Warning("부적절한 내용이 포함된 프롬프트입니다.")
return None
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe(
prompt=[translated_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
if not isinstance(generated_image, Image.Image):
generated_image = Image.fromarray(generated_image)
if generated_image.mode != 'RGB':
generated_image = generated_image.convert('RGB')
img_byte_arr = io.BytesIO()
generated_image.save(img_byte_arr, format='PNG')
return Image.open(io.BytesIO(img_byte_arr.getvalue()))
except Exception as e:
logger.error(f"Error in image generation: {str(e)}")
return None
def process_and_generate_video(image, prompt):
is_safe, translated_prompt = process_prompt(prompt)
if not is_safe:
gr.Warning("부적절한 내용이 포함된 프롬프트입니다.")
return None
return generate_video(image, translated_prompt)
def update_seed():
return get_random_seed()
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, img_prompt, seed],
outputs=img_output
)
video_generate_btn.click(
process_and_generate_video,
inputs=[upload_image, video_prompt],
outputs=video_output
)
randomize_seed.click(
update_seed,
outputs=[seed]
)
generate_btn.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |