File size: 14,738 Bytes
5e60b44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da4d4dd
 
 
5e60b44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import pipeline
import replicate
import logging
import requests
from pathlib import Path
import cv2
import numpy as np
import sys
import io
# 로깅 설정
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")


# API 설정
CATBOX_USER_HASH = "e7a96fc68dd4c7d2954040cd5"
REPLICATE_API_TOKEN = os.getenv("API_KEY")

# 환경 변수 설정
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

# CUDA 설정
torch.backends.cuda.matmul.allow_tf32 = True

# 번역기 초기화
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")


if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

def check_api_key():
    """API 키 확인 및 설정"""
    if not REPLICATE_API_TOKEN:
        logger.error("Replicate API key not found")
        return False
    os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
    logger.info("Replicate API token set successfully")
    return True

def translate_if_korean(text):
    """한글이 포함된 경우 영어로 번역"""
    if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):
        translation = translator(text)[0]['translation_text']
        return translation
    return text

def filter_prompt(prompt):
    inappropriate_keywords = [
        "nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
        "erotic", "sensual", "seductive", "provocative", "intimate",
        "violence", "gore", "blood", "death", "kill", "murder", "torture",
        "drug", "suicide", "abuse", "hate", "discrimination"
    ]
    
    prompt_lower = prompt.lower()
    for keyword in inappropriate_keywords:
        if keyword in prompt_lower:
            return False, "부적절한 내용이 포함된 프롬프트입니다."
    return True, prompt

def process_prompt(prompt):
    """프롬프트 전처리 (번역 및 필터링)"""
    translated_prompt = translate_if_korean(prompt)
    is_safe, filtered_prompt = filter_prompt(translated_prompt)
    return is_safe, filtered_prompt

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")

def upload_to_catbox(image_path):
    """catbox.moe API를 사용하여 이미지 업로드"""
    try:
        logger.info(f"Preparing to upload image: {image_path}")
        url = "https://catbox.moe/user/api.php"
        
        file_extension = Path(image_path).suffix.lower()
        if file_extension not in ['.jpg', '.jpeg', '.png', '.gif']:
            logger.error(f"Unsupported file type: {file_extension}")
            return None

        files = {
            'fileToUpload': (
                os.path.basename(image_path),
                open(image_path, 'rb'),
                'image/jpeg' if file_extension in ['.jpg', '.jpeg'] else 'image/png'
            )
        }
        
        data = {
            'reqtype': 'fileupload',
            'userhash': CATBOX_USER_HASH
        }

        response = requests.post(url, files=files, data=data)
        
        if response.status_code == 200 and response.text.startswith('http'):
            image_url = response.text
            logger.info(f"Image uploaded successfully: {image_url}")
            return image_url
        else:
            raise Exception(f"Upload failed: {response.text}")

    except Exception as e:
        logger.error(f"Image upload error: {str(e)}")
        return None

def add_watermark(video_path):
    """OpenCV를 사용하여 비디오에 워터마크 추가"""
    try:
        cap = cv2.VideoCapture(video_path)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        
        text = "GiniGEN.AI"
        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = height * 0.05 / 30
        thickness = 2
        color = (255, 255, 255)
        
        (text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
        margin = int(height * 0.02)
        x_pos = width - text_width - margin
        y_pos = height - margin
        
        output_path = "watermarked_output.mp4"
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
            out.write(frame)
        
        cap.release()
        out.release()
        
        return output_path
        
    except Exception as e:
        logger.error(f"Error adding watermark: {str(e)}")
        return video_path

def generate_video(image, prompt):
    logger.info("Starting video generation")
    try:
        if not check_api_key():
            return "Replicate API key not properly configured"

        if not image:
            logger.error("No image provided")
            return "Please upload an image"

        image_url = upload_to_catbox(image)
        if not image_url:
            return "Failed to upload image"

        input_data = {
            "prompt": prompt,
            "first_frame_image": image_url
        }

        try:
            replicate.Client(api_token=REPLICATE_API_TOKEN)
            output = replicate.run(
                "minimax/video-01-live",
                input=input_data
            )

            temp_file = "temp_output.mp4"
            
            if hasattr(output, 'read'):
                with open(temp_file, "wb") as file:
                    file.write(output.read())
            elif isinstance(output, str):
                response = requests.get(output)
                with open(temp_file, "wb") as file:
                    file.write(response.content)
            
            final_video = add_watermark(temp_file)
            return final_video

        except Exception as api_error:
            logger.error(f"API call failed: {str(api_error)}")
            return f"API call failed: {str(api_error)}"

    except Exception as e:
        logger.error(f"Unexpected error: {str(e)}")
        return f"Unexpected error: {str(e)}"

def save_image(image):
    """Save the generated image temporarily"""
    try:
        # 임시 디렉토리에 저장
        temp_dir = "temp"
        if not os.path.exists(temp_dir):
            os.makedirs(temp_dir, exist_ok=True)
            
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filepath = os.path.join(temp_dir, f"temp_{timestamp}.png")
        
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        image.save(filepath, format='PNG', optimize=True, quality=100)
        
        return filepath
    except Exception as e:
        logger.error(f"Error in save_image: {str(e)}")
        return None



css = """
footer {
    visibility: hidden;
}
"""


# Gradio 인터페이스 생성
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    gr.HTML('<div class="title">🎥 Dokdo✨ Digital Odyssey from Korea, Designing Original</div>')
    gr.HTML('<div class="title">😄 Enjoy the amazing free video creation and enhancement services!</div>')
    
    with gr.Tabs():
        with gr.Tab("Image Generation"):
            with gr.Row():
                with gr.Column(scale=3):
                    img_prompt = gr.Textbox(
                        label="Image Description",
                        placeholder="이미지 설명을 입력하세요... (한글 입력 가능)",
                        lines=3
                    )
                    
                    with gr.Accordion("Advanced Settings", open=False):
                        with gr.Row():
                            height = gr.Slider(
                                label="Height",
                                minimum=256,
                                maximum=1152,
                                step=64,
                                value=1024
                            )
                            width = gr.Slider(
                                label="Width",
                                minimum=256,
                                maximum=1152,
                                step=64,
                                value=1024
                            )
                        
                        with gr.Row():
                            steps = gr.Slider(
                                label="Inference Steps",
                                minimum=6,
                                maximum=25,
                                step=1,
                                value=8
                            )
                            scales = gr.Slider(
                                label="Guidance Scale",
                                minimum=0.0,
                                maximum=5.0,
                                step=0.1,
                                value=3.5
                            )
                        
                        def get_random_seed():
                            return torch.randint(0, 1000000, (1,)).item()
                        
                        seed = gr.Number(
                            label="Seed",
                            value=get_random_seed(),
                            precision=0
                        )
                        
                        randomize_seed = gr.Button("🎲 Randomize Seed", elem_classes=["generate-btn"])
                    
                    generate_btn = gr.Button(
                        "✨ Generate Image",
                        elem_classes=["generate-btn"]
                    )
                    
                with gr.Column(scale=4):
                    img_output = gr.Image(
                        label="Generated Image",
                        type="pil",
                        format="png"
                    )
                    

        with gr.Tab("Amazing Video Generation"):
            with gr.Row():
                with gr.Column(scale=3):
                    video_prompt = gr.Textbox(
                        label="Video Description",
                        placeholder="비디오 설명을 입력하세요... (한글 입력 가능)",
                        lines=3
                    )
                    upload_image = gr.Image(
                        type="filepath",
                        label="Upload First Frame Image"
                    )
                    video_generate_btn = gr.Button(
                        "🎬 Generate Video",
                        elem_classes=["generate-btn"]
                    )
                    
                with gr.Column(scale=4):
                    video_output = gr.Video(label="Generated Video")
                    
    @spaces.GPU
    def process_and_save_image(height, width, steps, scales, prompt, seed):
        is_safe, translated_prompt = process_prompt(prompt)
        if not is_safe:
            gr.Warning("부적절한 내용이 포함된 프롬프트입니다.")
            return None
          
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            try:
                generated_image = pipe(
                    prompt=[translated_prompt],
                    generator=torch.Generator().manual_seed(int(seed)),
                    num_inference_steps=int(steps),
                    guidance_scale=float(scales),
                    height=int(height),
                    width=int(width),
                    max_sequence_length=256
                ).images[0]
                    
                if not isinstance(generated_image, Image.Image):
                    generated_image = Image.fromarray(generated_image)
                    
                if generated_image.mode != 'RGB':
                    generated_image = generated_image.convert('RGB')
                    
                img_byte_arr = io.BytesIO()
                generated_image.save(img_byte_arr, format='PNG')
                
                return Image.open(io.BytesIO(img_byte_arr.getvalue()))
            except Exception as e:
                logger.error(f"Error in image generation: {str(e)}")
                return None    

                        

    def process_and_generate_video(image, prompt):
        is_safe, translated_prompt = process_prompt(prompt)
        if not is_safe:
            gr.Warning("부적절한 내용이 포함된 프롬프트입니다.")
            return None
        return generate_video(image, translated_prompt)

    def update_seed():
        return get_random_seed()
        
    generate_btn.click(
        process_and_save_image,
        inputs=[height, width, steps, scales, img_prompt, seed],
        outputs=img_output
    )

    video_generate_btn.click(
        process_and_generate_video,
        inputs=[upload_image, video_prompt],
        outputs=video_output
    )
    
    randomize_seed.click(
        update_seed,
        outputs=[seed]
    )
    
    generate_btn.click(
        update_seed,
        outputs=[seed]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )