Spaces:
Running
Running
File size: 10,349 Bytes
176edce 80e38a2 176edce 80e38a2 343fdaf 176edce 343fdaf 80e38a2 343fdaf 80e38a2 176edce 343fdaf 80e38a2 343fdaf 80e38a2 176edce 80e38a2 176edce 343fdaf 80e38a2 3ec2621 7b9b23e 80e38a2 3ec2621 80e38a2 3ec2621 80e38a2 3ec2621 343fdaf 80e38a2 343fdaf 80e38a2 3ec2621 80e38a2 3ec2621 343fdaf 80e38a2 176edce 80e38a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import time
from os import path
import tempfile
import uuid
import base64
import mimetypes
import json
import torch
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
# Diffusers ๊ด๋ จ ๋ผ์ด๋ธ๋ฌ๋ฆฌ
import gradio as gr
from diffusers import FluxPipeline
# Google GenAI ๋ผ์ด๋ธ๋ฌ๋ฆฌ
from google import genai
from google.genai import types
#######################################
# 0. ํ๊ฒฝ์ค์
#######################################
# ๋ชจ๋ธ ์บ์ ๋๋ ํ ๋ฆฌ ์ค์
BASE_DIR = path.dirname(path.abspath(__file__)) if "__file__" in globals() else os.getcwd()
CACHE_PATH = path.join(BASE_DIR, "models")
os.environ["TRANSFORMERS_CACHE"] = CACHE_PATH
os.environ["HF_HUB_CACHE"] = CACHE_PATH
os.environ["HF_HOME"] = CACHE_PATH
# Google GenAI ์ฌ์ฉ์ ์ํด์๋ ๋ค์๊ณผ ๊ฐ์ ํ๊ฒฝ ๋ณ์๊ฐ ํ์ํฉ๋๋ค.
# os.environ["GAPI_TOKEN"] = "<YOUR_GOOGLE_GENAI_API_KEY>"
# ์์
์๊ฐ ์ธก์ ์ ์ํ ๊ฐ๋จํ ํ์ด๋จธ ํด๋์ค
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
#######################################
# 1. FLUX ํ์ดํ๋ผ์ธ ๋ก๋
#######################################
if not path.exists(CACHE_PATH):
os.makedirs(CACHE_PATH, exist_ok=True)
# FLUX ํ์ดํ๋ผ์ธ ๋ก๋
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
# LoRA ๊ฐ์ค์น ๋ก๋
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
# GPU๋ก ์ฎ๊ธฐ๊ธฐ
pipe.to(device="cuda", dtype=torch.bfloat16)
#######################################
# 2. Google GenAI๋ฅผ ํตํ ์ด๋ฏธ์ง ๋ด ํ
์คํธ ๋ณํ ํจ์
#######################################
def save_binary_file(file_name, data):
"""Google GenAI์์ ์๋ต๋ฐ์ ์ด์ง ๋ฐ์ดํฐ๋ฅผ ์ด๋ฏธ์ง ํ์ผ๋ก ์ ์ฅ"""
with open(file_name, "wb") as f:
f.write(data)
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
"""
Google GenAI(gemini) ๋ชจ๋ธ์ ํตํด ์ด๋ฏธ์ง/ํ
์คํธ๋ฅผ ์์ฑํ๊ฑฐ๋ ๋ณํ.
- text: ๋ณ๊ฒฝํ ํ
์คํธ๋ ๋ช
๋ น์ด ๋ฑ ํ๋กฌํํธ
- file_name: ์๋ณธ ์ด๋ฏธ์ง(์: .png) ๊ฒฝ๋ก
- model: ์ฌ์ฉํ gemini ๋ชจ๋ธ ์ด๋ฆ
"""
# 1) Google Client ์ด๊ธฐํ
client = genai.Client(api_key=os.getenv("GAPI_TOKEN"))
# 2) ์ด๋ฏธ์ง ์
๋ก๋
files = [client.files.upload(file=file_name)]
# 3) gemini์ ์ ๋ฌํ Content ์ค๋น (์ด๋ฏธ์ง + ํ๋กฌํํธ)
contents = [
types.Content(
role="user",
parts=[
types.Part.from_uri(
file_uri=files[0].uri,
mime_type=files[0].mime_type,
),
types.Part.from_text(text=text),
],
),
]
# 4) ์์ฑ/๋ณํ ์ค์
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_modalities=["image", "text"],
response_mime_type="text/plain",
)
text_response = ""
image_path = None
# ์์ ํ์ผ๋ก ์ด๋ฏธ์ง ๋ฐ์ ์ค๋น
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
temp_path = tmp.name
# 5) ์คํธ๋ฆผ ํํ๋ก ์๋ต ๋ฐ์์ ์ด๋ฏธ์ง/ํ
์คํธ ๊ตฌ๋ถ ์ฒ๋ฆฌ
for chunk in client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
):
if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
continue
candidate = chunk.candidates[0].content.parts[0]
# inline_data๊ฐ ์์ผ๋ฉด ์ด๋ฏธ์ง ์๋ต
if candidate.inline_data:
save_binary_file(temp_path, candidate.inline_data.data)
print(f"File of mime type {candidate.inline_data.mime_type} saved to: {temp_path}")
image_path = temp_path
break # ์ด๋ฏธ์ง๊ฐ ์ค๋ฉด ์ฐ์ ๋ฉ์ถค
else:
# ์์ผ๋ฉด ํ
์คํธ๋ฅผ ๋์
text_response += chunk.text + "\n"
# ์
๋ก๋ ํ์ผ(google.genai.files.File) ๊ฐ์ฒด ์ ๊ฑฐ
del files
return image_path, text_response
#######################################
# 3. Gradio ํจ์: (1) FLUX๋ก ์ด๋ฏธ์ง ์์ฑ -> (2) Google GenAI๋ก ํ
์คํธ ๊ต์ฒด
#######################################
def generate_initial_image(prompt, text, height, width, steps, scale, seed):
"""
FLUX ํ์ดํ๋ผ์ธ์ ์ฌ์ฉํด 'ํ
์คํธ๊ฐ ํฌํจ๋ ์ด๋ฏธ์ง๋ฅผ' ๋จผ์ ์์ฑํ๋ ํจ์.
prompt: ์ด๋ฏธ์ง ๋ฐฐ๊ฒฝ/์ฅ๋ฉด/์คํ์ผ ๋ฌ์ฌ๋ฅผ ์ํ ํ๋กฌํํธ
text: ์ค์ ๋ก ์ด๋ฏธ์ง์ ๋ค์ด๊ฐ์ผ ํ ๋ฌธ๊ตฌ(์: "์๋
ํ์ธ์", "Hello world" ๋ฑ)
"""
# ์ด๋ฏธ์ง์ ํ
์คํธ๋ฅผ ํฌํจ์ํค๋ ค๋ฉด ํ๋กฌํํธ์ ์ง์ ๋ฌธ๊ตฌ ์์ฒญ์ ๋ฃ๋ ๊ฒ์ด ์ค์.
# Diffusion ๋ชจ๋ธ์ ๋ฐ๋ผ ์ ๋ฐ์๋์ง ์์ ์๋ ์์ผ๋, ๊ตฌ์ฒด์ ์ผ๋ก ๊ธฐ์ฌํ ์๋ก ์ ๋ฆฌ.
# ์: "A poster with large bold Korean text that says '์๋
ํ์ธ์' in red color ..."
# ์ฌ๊ธฐ์๋ ๊ฐ๋จํ prompt ๋ค์ ํ
์คํธ ์ฝ์
์์๋ฅผ ๋ณด์ฌ์ค
combined_prompt = f"{prompt} with clear readable text that says '{text}'"
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
result = pipe(
prompt=[combined_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scale),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
return result
def change_text_in_image(original_image, new_text):
"""
Google GenAI์ gemini ๋ชจ๋ธ์ ํตํด,
์
๋ก๋๋ ์ด๋ฏธ์ง ๋ด๋ถ์ ๋ฌธ๊ตฌ๋ฅผ `new_text`๋ก ๋ณ๊ฒฝํด์ฃผ๋ ํจ์.
"""
try:
# ์์ ํ์ผ์ ๋จผ์ ์ ์ฅ
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
original_path = tmp.name
original_image.save(original_path)
# Gemini ๋ชจ๋ธ ํธ์ถ
image_path, text_response = generate_by_google_genai(
text=f"Change the text in this image to: '{new_text}'",
file_name=original_path
)
# ๊ฒฐ๊ณผ๊ฐ ์ด๋ฏธ์ง๋ก ์๋ค๋ฉด
if image_path:
modified_img = gr.processing_utils.decode_base64_to_image(
base64.b64encode(open(image_path, "rb").read())
)
return modified_img, "" # (๊ฒฐ๊ณผ ์ด๋ฏธ์ง, ๋น ํ
์คํธ)
else:
# ์ด๋ฏธ์ง๊ฐ ์์ด ํ
์คํธ๋ง ์๋ต์ผ๋ก ์จ ๊ฒฝ์ฐ
return None, text_response
except Exception as e:
raise gr.Error(f"Error: {e}")
#######################################
# 4. Gradio ์ธํฐํ์ด์ค ๊ตฌ์ฑ
#######################################
with gr.Blocks(title="Flux + Google GenAI Text Replacement") as demo:
gr.Markdown(
"""
# Flux ๊ธฐ๋ฐ ์ด๋ฏธ์ง ์์ฑ + Google GenAI๋ฅผ ํตํ ํ
์คํธ ๋ณํ
**์ด ๋ฐ๋ชจ๋ ์๋ ๋ ๋จ๊ณ๋ฅผ ๋ณด์ฌ์ค๋๋ค.**
1) **Diffusion ๋ชจ๋ธ(FluxPipeline)์ ์ด์ฉํด** ์ด๋ฏธ์ง ์์ฑ.
- ์ด๋, ์ฌ์ฉ์๊ฐ ์ง์ ํ ํ
์คํธ๋ฅผ ์ด๋ฏธ์ง ์์ ํ์ํ๋๋ก ์๋ํฉ๋๋ค.
2) **์์ฑ๋ ์ด๋ฏธ์ง๋ฅผ Google GenAI(gemini) ๋ชจ๋ธ์ ์ ๋ฌ**ํ์ฌ,
- ์ด๋ฏธ์ง ๋ด ํ
์คํธ ๋ถ๋ถ๋ง ๋ค๋ฅธ ๋ฌธ์์ด๋ก ๋ณ๊ฒฝ.
---
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("## 1) Step 1: FLUX๋ก ํ
์คํธ ํฌํจ ์ด๋ฏธ์ง ์์ฑ")
prompt_input = gr.Textbox(
lines=3,
label="์ด๋ฏธ์ง ์ฅ๋ฉด/๋ฐฐ๊ฒฝ Prompt",
placeholder="์) A poster with futuristic neon style..."
)
text_input = gr.Textbox(
lines=1,
label="์ด๋ฏธ์ง ์์ ๋ค์ด๊ฐ ํ
์คํธ",
placeholder="์) ์๋
ํ์ธ์"
)
with gr.Accordion("๊ณ ๊ธ ์ค์ (ํ์ฅ)", open=False):
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
seed = gr.Number(label="Seed (reproducibility)", value=1234, precision=0)
generate_btn = gr.Button("Generate Base Image", variant="primary")
# ์์ฑ ๊ฒฐ๊ณผ ํ์
generated_image = gr.Image(
label="Generated Image (with text)",
type="pil"
)
with gr.Column():
gr.Markdown("## 2) Step 2: ์์ฑ๋ ์ด๋ฏธ์ง ๋ด ํ
์คํธ ์์ ")
new_text_input = gr.Textbox(
label="์๋ก ๋ฐ๊ฟ ํ
์คํธ",
placeholder="์) Hello world"
)
modify_btn = gr.Button("Change Text in Image via Gemini", variant="secondary")
output_img = gr.Image(label="Modified Image", type="pil")
output_txt = gr.Textbox(label="(If only text returned)")
# ๋ฒํผ ์ก์
์ฐ๊ฒฐ
generate_btn.click(
fn=generate_initial_image,
inputs=[prompt_input, text_input, height, width, steps, scale, seed],
outputs=[generated_image]
)
modify_btn.click(
fn=change_text_in_image,
inputs=[generated_image, new_text_input],
outputs=[output_img, output_txt]
)
# ์ค์ ์คํ ์์๋ ์๋์ ๊ฐ์ด demo.launch()๋ฅผ ํธ์ถํฉ๋๋ค.
if __name__ == "__main__":
demo.queue(concurrency_count=1, max_size=20).launch()
|