Spaces:
Running
Running
import os | |
import re | |
import time | |
from os import path | |
import tempfile | |
import uuid | |
import base64 | |
import mimetypes | |
import json | |
import io | |
import random | |
import string | |
import torch | |
from PIL import Image | |
from transformers import pipeline | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
# Diffusers | |
import gradio as gr | |
from diffusers import FluxPipeline | |
# (Internal) text-modification library | |
from google import genai | |
from google.genai import types | |
####################################### | |
# 0. Environment & Translation Pipeline | |
####################################### | |
BASE_DIR = path.dirname(path.abspath(__file__)) if "__file__" in globals() else os.getcwd() | |
CACHE_PATH = path.join(BASE_DIR, "models") | |
os.environ["TRANSFORMERS_CACHE"] = CACHE_PATH | |
os.environ["HF_HUB_CACHE"] = CACHE_PATH | |
os.environ["HF_HOME"] = CACHE_PATH | |
# Translation (Korean -> English), CPU only | |
translator = pipeline( | |
task="translation", | |
model="Helsinki-NLP/opus-mt-ko-en", | |
device=-1 # force CPU | |
) | |
def maybe_translate_to_english(text: str) -> str: | |
""" | |
If the prompt contains any Korean characters, translate to English. | |
Otherwise, return as-is. | |
""" | |
if re.search("[가-힣]", text): | |
translated = translator(text)[0]["translation_text"] | |
print(f"[TRANSLATE] Detected Korean -> '{text}' -> '{translated}'") | |
return translated | |
return text | |
# Simple Timer Class | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"[TIMER] {self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"[TIMER] {self.method} took {round(end - self.start, 2)}s") | |
####################################### | |
# 1. Load FLUX Pipeline | |
####################################### | |
if not path.exists(CACHE_PATH): | |
os.makedirs(CACHE_PATH, exist_ok=True) | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.bfloat16 | |
) | |
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors") | |
pipe.load_lora_weights(lora_path) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
####################################### | |
# 2. Internal Text Modification Functions | |
####################################### | |
def save_binary_file(file_name, data): | |
with open(file_name, "wb") as f: | |
f.write(data) | |
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"): | |
""" | |
Internally modifies text within an image, returning a new image path. | |
(Screen instructions do not mention 'Google'.) | |
""" | |
api_key = os.getenv("GAPI_TOKEN", None) | |
if not api_key: | |
raise ValueError( | |
"GAPI_TOKEN is missing. Please set an API key." | |
) | |
client = genai.Client(api_key=api_key) | |
files = [client.files.upload(file=file_name)] | |
contents = [ | |
types.Content( | |
role="user", | |
parts=[ | |
types.Part.from_uri( | |
file_uri=files[0].uri, | |
mime_type=files[0].mime_type, | |
), | |
types.Part.from_text(text=text), | |
], | |
), | |
] | |
generate_content_config = types.GenerateContentConfig( | |
temperature=1, | |
top_p=0.95, | |
top_k=40, | |
max_output_tokens=8192, | |
response_modalities=["image", "text"], | |
response_mime_type="text/plain", | |
) | |
text_response = "" | |
image_path = None | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
temp_path = tmp.name | |
for chunk in client.models.generate_content_stream( | |
model=model, | |
contents=contents, | |
config=generate_content_config, | |
): | |
if not chunk.candidates or not chunk.candidates[0].content: | |
continue | |
candidate = chunk.candidates[0].content.parts[0] | |
if candidate.inline_data: | |
save_binary_file(temp_path, candidate.inline_data.data) | |
print(f"[DEBUG] Returned new image -> {temp_path}") | |
image_path = temp_path | |
break | |
else: | |
text_response += chunk.text + "\n" | |
del files | |
return image_path, text_response | |
####################################### | |
# 3. Diffusion Utility | |
####################################### | |
def generate_random_letters(length: int) -> str: | |
""" | |
Create a random sequence of uppercase/lowercase letters of given length. | |
""" | |
letters = string.ascii_lowercase + string.ascii_uppercase | |
return "".join(random.choice(letters) for _ in range(length)) | |
def is_all_english(text: str) -> bool: | |
""" | |
Check if text consists only of English letters (a-z, A-Z), digits, spaces, | |
and a few basic punctuation characters. If so, return True. | |
Otherwise, False (includes Korean or other characters). | |
""" | |
return bool(re.match(r'^[a-zA-Z0-9\s\.,!\?\']*$', text)) | |
def maybe_use_random_or_original(final_text: str) -> str: | |
""" | |
If final_text is strictly English/allowed chars, use it as-is. | |
If it contains other chars (like Korean, etc.), | |
replace with random letters of the same length. | |
""" | |
if not final_text: | |
return "" | |
if is_all_english(final_text): | |
return final_text | |
else: | |
return generate_random_letters(len(final_text)) | |
def fill_prompt_with_random_texts(prompt: str, r1: str, r2: str, r3: str) -> str: | |
""" | |
Replace <text1>, <text2>, <text3> with r1, r2, r3 respectively. | |
<text1> is required; if missing, we append something. | |
""" | |
if "<text1>" in prompt: | |
prompt = prompt.replace("<text1>", r1) | |
else: | |
prompt = f"{prompt} with clear readable text that says '{r1}'" | |
if "<text2>" in prompt: | |
prompt = prompt.replace("<text2>", r2) | |
if "<text3>" in prompt: | |
prompt = prompt.replace("<text3>", r3) | |
return prompt | |
def generate_initial_image(prompt, height, width, steps, scale, seed): | |
""" | |
Use Flux Pipeline to generate the initial image from the prompt. | |
""" | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("Flux Generation"): | |
result = pipe( | |
prompt=[prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scale), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
return result | |
####################################### | |
# 4. Creating 2 Final Images | |
####################################### | |
def build_multi_change_instruction(r1, f1, r2, f2, r3, f3): | |
""" | |
Summarize instructions to replace (r1->f1), (r2->f2), (r3->f3). | |
""" | |
instructions = [] | |
if r1 and f1: | |
instructions.append(f"Change any text reading '{r1}' in this image to '{f1}'.") | |
if r2 and f2: | |
instructions.append(f"Change any text reading '{r2}' in this image to '{f2}'.") | |
if r3 and f3: | |
instructions.append(f"Change any text reading '{r3}' in this image to '{f3}'.") | |
if instructions: | |
return " ".join(instructions) | |
return "No text changes needed." | |
def change_text_in_image_two_times(original_image, instruction): | |
""" | |
Call the text modification function twice, | |
returning 2 final variations. | |
""" | |
results = [] | |
for version_tag in ["(A)", "(B)"]: | |
mod_instruction = f"{instruction} {version_tag}" | |
try: | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
original_path = tmp.name | |
original_image.save(original_path) | |
image_path, text_response = generate_by_google_genai( | |
text=mod_instruction, | |
file_name=original_path | |
) | |
if image_path: | |
with open(image_path, "rb") as f: | |
image_data = f.read() | |
new_img = Image.open(io.BytesIO(image_data)) | |
results.append(new_img) | |
else: | |
results.append(original_image) | |
except Exception as e: | |
raise gr.Error(f"Error: {e}") | |
return results | |
####################################### | |
# 5. Main Process | |
####################################### | |
def run_process( | |
prompt, | |
final_text1, | |
final_text2, | |
final_text3, | |
height, | |
width, | |
steps, | |
scale, | |
seed | |
): | |
""" | |
1) If prompt has Korean, translate to English | |
2) For each <textX>, if it's purely English, use as-is, | |
else generate random letters of the same length. | |
3) Generate initial image with these placeholders | |
4) Then produce 2 final images by replacing placeholders with real texts | |
""" | |
prompt_en = maybe_translate_to_english(prompt) | |
# Decide random vs original for each text | |
r1 = maybe_use_random_or_original(final_text1) | |
r2 = maybe_use_random_or_original(final_text2) | |
r3 = maybe_use_random_or_original(final_text3) | |
print(f"[DEBUG] Using placeholders: r1='{r1}', r2='{r2}', r3='{r3}'") | |
# Fill prompt | |
final_prompt = fill_prompt_with_random_texts(prompt_en, r1, r2, r3) | |
print(f"[DEBUG] final_prompt = {final_prompt}") | |
# Generate initial "random/original" image | |
_random_image = generate_initial_image(final_prompt, height, width, steps, scale, seed) | |
# Build final instructions & call twice -> 2 final images | |
instruction = build_multi_change_instruction(r1, final_text1, r2, final_text2, r3, final_text3) | |
final_imgs = change_text_in_image_two_times(_random_image, instruction) | |
# Return only the 2 final images (don't show the random image) | |
return [final_imgs[0], final_imgs[1]] | |
####################################### | |
# 6. Gradio UI | |
####################################### | |
with gr.Blocks(title="Eevery Text Imaginator: FLUX") as demo: | |
gr.Markdown( | |
""" | |
<h2 style="text-align:center; margin-bottom: 15px;"> | |
<strong>Eevery Text Imaginator: FLUX</strong> | |
</h2> | |
<p style="text-align:center;"> | |
This tool generates two final images from a prompt | |
containing placeholders <code><text1></code>, <code><text2></code>, <code><text3></code>. | |
If your chosen text is purely English, it will appear directly; | |
otherwise it becomes random letters in the initial phase. | |
</p> | |
<hr style="margin: 15px 0;"> | |
""" | |
) | |
# 5 example prompts (focusing on <text1>, <text2>) | |
examples = [ | |
[ | |
"On a grand stage, <text1> in big letters and <text2> on the left side", | |
"HELLO", "WORLD", "" | |
], | |
[ | |
"Futuristic neon sign with <text1>, plus <text2> near the bottom", | |
"WELCOME", "SALE", "" | |
], | |
[ | |
"A classical poster reading <text1> in bold, <text2> as a subtitle", | |
"MUSICFEST", "2025", "" | |
], | |
[ | |
"In a cartoon style, a speech bubble with <text1> and another text <text2>", | |
"HI!", "OhYes", "" | |
], | |
[ | |
"Large billboard featuring <text1>, smaller text <text2> in the corner", | |
"ANNOUNCEMENT", "OPENNOW", "" | |
], | |
] | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Box(): | |
prompt_input = gr.Textbox( | |
lines=3, | |
label="Prompt (Korean or English)", | |
placeholder="On a grand stage, <text1> in big letters..." | |
) | |
final_text1 = gr.Textbox( | |
label="New Text #1 (Required)", | |
placeholder="Example: HELLO or 안녕하세요" | |
) | |
final_text2 = gr.Textbox( | |
label="New Text #2 (Optional)", | |
placeholder="Example: WORLD or 반갑습니다" | |
) | |
final_text3 = gr.Textbox( | |
label="New Text #3 (Optional)", | |
placeholder="(Leave blank if not used)" | |
) | |
with gr.Accordion("Advanced Settings (optional)", open=False): | |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512) | |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512) | |
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.5, value=3.5) | |
seed = gr.Number(label="Seed", value=1234, precision=0) | |
run_btn = gr.Button("Generate 2 Final Images", variant="primary") | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt_input, final_text1, final_text2, final_text3], | |
label="Example Prompts" | |
) | |
with gr.Column(): | |
final_image_output1 = gr.Image(label="Final Image #1", type="pil") | |
final_image_output2 = gr.Image(label="Final Image #2", type="pil") | |
# We only display the 2 final images, not the initial random image | |
run_btn.click( | |
fn=run_process, | |
inputs=[ | |
prompt_input, | |
final_text1, | |
final_text2, | |
final_text3, | |
height, | |
width, | |
steps, | |
scale, | |
seed | |
], | |
outputs=[final_image_output1, final_image_output2] | |
) | |
demo.launch(max_threads=20) | |