Spaces:
ginigen
/
Running on Zero

File size: 14,604 Bytes
176edce
 
 
 
 
0b63713
 
176edce
 
f8844a3
 
 
8d2510b
0b63713
ac3894a
0e7941e
176edce
ac3894a
 
 
 
176edce
 
 
ac3894a
176edce
343fdaf
0b63713
 
 
 
8d2510b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176edce
 
 
 
 
 
 
 
 
343fdaf
f8844a3
176edce
 
343fdaf
176edce
 
 
 
343fdaf
8d2510b
 
 
de7fb8a
f8844a3
35695a2
 
 
 
 
 
 
 
 
0e7941e
 
 
 
f8844a3
0e7941e
f8844a3
 
 
0e7941e
f8844a3
 
 
0e7941e
f8844a3
 
 
de7fb8a
35695a2
 
 
5e92500
35695a2
8f39f51
 
 
 
5e92500
 
35695a2
8f39f51
35695a2
 
5e92500
 
0b63713
 
 
35695a2
 
 
5e92500
 
 
 
 
 
 
 
 
 
 
 
 
35695a2
0b63713
 
35695a2
66fcae2
35695a2
66fcae2
35695a2
47297cd
 
 
35695a2
47297cd
 
 
35695a2
 
 
 
 
 
 
 
47297cd
35695a2
47297cd
35695a2
47297cd
35695a2
47297cd
de7fb8a
8d2510b
0b63713
 
0b34ea3
ac3894a
 
 
 
 
 
0b34ea3
ac3894a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b34ea3
 
 
ac3894a
0b34ea3
0b63713
 
 
0b34ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b63713
2bfd5d9
 
 
 
0e7941e
6bae606
0e7941e
8d2510b
 
 
b331133
8d2510b
 
2bfd5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7941e
2bfd5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
f8844a3
2bfd5d9
 
 
 
 
 
 
 
 
 
 
f8844a3
2bfd5d9
 
 
 
 
 
 
920bbb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bfd5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec2621
 
0b63713
8d2510b
 
 
 
 
 
3ec2621
0b34ea3
 
8d2510b
0b34ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8844a3
18f2392
 
 
3ec2621
0b63713
3ec2621
0b63713
3ec2621
18f2392
 
 
 
 
 
 
 
 
 
343fdaf
176edce
88fe7fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
# Use PERSISTENT_DIR environment variable for Spaces
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")

os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

torch.backends.cuda.matmul.allow_tf32 = True

# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
    os.makedirs(gallery_path, exist_ok=True)

def filter_prompt(prompt):
    # ๋ถ€์ ์ ˆํ•œ ํ‚ค์›Œ๋“œ ๋ชฉ๋ก
    inappropriate_keywords = [
        # ์Œ๋ž€/์„ฑ์  ํ‚ค์›Œ๋“œ
        "nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
        "erotic", "sensual", "seductive", "provocative", "intimate",
        # ํญ๋ ฅ์  ํ‚ค์›Œ๋“œ
        "violence", "gore", "blood", "death", "kill", "murder", "torture",
        # ๊ธฐํƒ€ ๋ถ€์ ์ ˆํ•œ ํ‚ค์›Œ๋“œ
        "drug", "suicide", "abuse", "hate", "discrimination"
    ]
    
    prompt_lower = prompt.lower()
    
    # ๋ถ€์ ์ ˆํ•œ ํ‚ค์›Œ๋“œ ์ฒดํฌ
    for keyword in inappropriate_keywords:
        if keyword in prompt_lower:
            return False, "๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค."
            
    return True, prompt

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

# Add safety checker
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")

css = """
footer {display: none !important}
.gradio-container {
    max-width: 1200px;
    margin: auto;
}
.contain {
    background: rgba(255, 255, 255, 0.05);
    border-radius: 12px;
    padding: 20px;
}
.generate-btn {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
    border: none !important;
    color: white !important;
}
.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
    text-align: center;
    font-size: 2.5em;
    font-weight: bold;
    margin-bottom: 1em;
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
}
#gallery {
    width: 100% !important;
    max-width: 100% !important;
    overflow: visible !important;
}
#gallery > div {
    width: 100% !important;
    max-width: none !important;
}
#gallery > div > div {
    width: 100% !important;
    display: grid !important;
    grid-template-columns: repeat(5, 1fr) !important;
    gap: 16px !important;
    padding: 16px !important;
}
.gallery-container {
    background: rgba(255, 255, 255, 0.05);
    border-radius: 8px;
    margin-top: 10px;
    width: 100% !important;
    box-sizing: border-box !important;
}
.gallery-item {
    width: 100% !important;
    aspect-ratio: 1 !important;
    overflow: hidden !important;
    border-radius: 4px !important;
}
.gallery-item img {
    width: 100% !important;
    height: 100% !important;
    object-fit: cover !important;
    border-radius: 4px !important;
    transition: transform 0.2s;
}
.gallery-item img:hover {
    transform: scale(1.05);
}
.output-image {
    width: 100% !important;
    max-width: 100% !important;
}
.contain > div {
    width: 100% !important;
    max-width: 100% !important;
}
.fixed-width {
    width: 100% !important;
    max-width: 100% !important;
}
.gallery-container::-webkit-scrollbar {
    display: none !important;
}
.gallery-container {
    -ms-overflow-style: none !important;
    scrollbar-width: none !important;
}
#gallery > div {
    width: 100% !important;
    max-width: 100% !important;
}
#gallery > div > div {
    width: 100% !important;
    max-width: 100% !important;
}
"""

def save_image(image):
    """Save the generated image and return the path"""
    try:
        if not os.path.exists(gallery_path):
            try:
                os.makedirs(gallery_path, exist_ok=True)
            except Exception as e:
                print(f"Failed to create gallery directory: {str(e)}")
                return None
        
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        random_suffix = os.urandom(4).hex()
        filename = f"generated_{timestamp}_{random_suffix}.png"
        filepath = os.path.join(gallery_path, filename)
        
        try:
            if isinstance(image, Image.Image):
                image.save(filepath, "PNG", quality=100)
            else:
                image = Image.fromarray(image)
                image.save(filepath, "PNG", quality=100)
            
            if not os.path.exists(filepath):
                print(f"Warning: Failed to verify saved image at {filepath}")
                return None
                
            return filepath
        except Exception as e:
            print(f"Failed to save image: {str(e)}")
            return None
            
    except Exception as e:
        print(f"Error in save_image: {str(e)}")
        return None

def load_gallery():
    """Load all images from the gallery directory"""
    try:
        os.makedirs(gallery_path, exist_ok=True)
        
        image_files = []
        for f in os.listdir(gallery_path):
            if f.lower().endswith(('.png', '.jpg', '.jpeg')):
                full_path = os.path.join(gallery_path, f)
                image_files.append((full_path, os.path.getmtime(full_path)))
        
        image_files.sort(key=lambda x: x[1], reverse=True)
        
        return [f[0] for f in image_files]
    except Exception as e:
        print(f"Error loading gallery: {str(e)}")
        return []

def get_random_seed():
    return torch.randint(0, 1000000, (1,)).item()

# Create Gradio interface with a left sidebar for inputs
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.HTML('<div class="title">FLUX Image Eternity</div>')
    gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
    
    gr.HTML("""
        <div style="color: red; margin-bottom: 1em; text-align: center; padding: 10px; background: rgba(255,0,0,0.1); border-radius: 8px;">
            โš ๏ธ Explicit or inappropriate content cannot be generated.
        </div>
    """)
    
    with gr.Sidebar():
        # ์ขŒ์ธก ์‚ฌ์ด๋“œ๋ฐ” ๋ฉ”๋‰ด: ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ ๋ฐ ๊ณ ๊ธ‰ ์„ค์ •
        prompt = gr.Textbox(
            label="Image Description",
            placeholder="Describe the image you want to create...",
            lines=3
        )
        
        with gr.Accordion("Advanced Settings", open=False):
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=1152,
                step=64,
                value=1024
            )
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=1152,
                step=64,
                value=1024
            )
            with gr.Row():
                steps = gr.Slider(
                    label="Inference Steps",
                    minimum=6,
                    maximum=25,
                    step=1,
                    value=8
                )
                scales = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.0,
                    maximum=5.0,
                    step=0.1,
                    value=3.5
                )
            seed = gr.Number(
                label="Seed (random by default, set for reproducibility)",
                value=get_random_seed(),
                precision=0
            )
            randomize_seed = gr.Button("๐ŸŽฒ Randomize Seed", elem_classes=["generate-btn"])
        
        generate_btn = gr.Button(
            "โœจ Generate Image",
            elem_classes=["generate-btn"]
        )
        
        # ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ์˜ˆ์ œ ํ”„๋กฌํ”„ํŠธ ์˜์—ญ
        gr.Markdown("## Example Prompts")
        example_prompts = [
            {
                "title": "๐ŸŒ… Cinematic Landscape", 
                "prompt": "A breathtaking mountain vista at golden hour with dramatic sunbeams piercing through a sea of clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, and an award-winning landscape composition reminiscent of a masterpiece captured on Hasselblad."
            },
            {
                "title": "๐Ÿ–ผ๏ธ Fantasy Portrait", 
                "prompt": "An ethereal portrait of an elven queen with flowing silver hair, adorned with shimmering luminescent crystals and an intricate crown of twisted gold and moonstone, bathed in soft, magical lighting with highly detailed facial features that evoke ancient mysticism."
            },
            {
                "title": "๐ŸŒƒ Cyberpunk Scene", 
                "prompt": "A neon-drenched cyberpunk street market in torrential rain, with holographic advertisements reflecting off wet asphalt, futuristic street vendors, and a dense urban atmosphere reminiscent of Blade Runner 2049, all rendered in vivid cinematic style."
            },
            {
                "title": "๐ŸŽจ Abstract Art", 
                "prompt": "A vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples, teals, and gold, with geometric patterns emerging from chaosโ€”an explosion of creativity that evokes modern expressionist masterpieces."
            },
            {
                "title": "๐ŸŒฟ Macro Nature", 
                "prompt": "An extreme macro photograph capturing a dewdrop delicately perched on a butterfly wing, revealing intricate wing scales and rainbow refractions of light, set against a naturally blurred bokeh background, like a high-end studio shot."
            },
            {
                "title": "๐Ÿค– Futuristic Cityscape", 
                "prompt": "A vibrant futuristic cityscape at night illuminated by neon lights, holographic billboards, and flying vehicles; towering skyscrapers and a bustling urban atmosphere rendered in ultra-detailed, cinematic style."
            },
            {
                "title": "๐Ÿงš Enchanted Forest", 
                "prompt": "A mystical, enchanted forest bathed in soft, ethereal light, filled with luminescent flora, magical creatures, and ancient trees draped in mossโ€”evoking a dreamlike fairy tale ambiance with intricate details."
            },
            {
                "title": "๐ŸŒŒ Cosmic Explosion", 
                "prompt": "A stunning cosmic explosion in deep space, with vibrant nebulae, swirling galaxies, and a burst of radiant colors illuminating the cosmosโ€”captured in high-resolution digital art that is both ethereal and awe-inspiring."
            }
        ]
        # ๊ฐ ์˜ˆ์ œ๋งˆ๋‹ค ๋ฒ„ํŠผ์„ ๋งŒ๋“ค์–ด ํด๋ฆญ ์‹œ prompt์— ํ•ด๋‹น ๋ฌธ๊ตฌ๊ฐ€ ์ž๋™ ์‚ฝ์ž…๋˜๋„๋ก ํ•จ
        for ex in example_prompts:
            btn = gr.Button(ex["title"], variant="secondary")
            # ๊ธฐ๋ณธ ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ ex["prompt"]๋ฅผ ์บก์ฒ˜ํ•˜์—ฌ, ๋ฒ„ํŠผ ํด๋ฆญ ์‹œ ํ”„๋กฌํ”„ํŠธ์— ํ•ด๋‹น ํ…์ŠคํŠธ๋ฅผ ๋ฐ˜ํ™˜
            btn.click(fn=lambda prompt_text=ex["prompt"]: prompt_text, inputs=[], outputs=prompt)
            gr.Markdown(f"*{ex['prompt']}*")
    
    with gr.Column():
        # ๋ฉ”์ธ ์˜์—ญ: ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€์™€ ๊ฐค๋Ÿฌ๋ฆฌ ํ‘œ์‹œ
        output = gr.Image(
            label="Generated Image",
            elem_id="output-image",
            elem_classes=["output-image", "fixed-width"]
        )
        
        gallery = gr.Gallery(
            label="Generated Images Gallery",
            show_label=True,
            elem_id="gallery",
            columns=[4],
            rows=[2],
            height="auto",
            object_fit="cover",
            elem_classes=["gallery-container", "fixed-width"]
        )
        gallery.value = load_gallery()
    
    @spaces.GPU
    def process_and_save_image(height, width, steps, scales, prompt, seed):
        # ํ”„๋กฌํ”„ํŠธ ํ•„ํ„ฐ๋ง
        is_safe, filtered_prompt = filter_prompt(prompt)
        if not is_safe:
            gr.Warning("๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค.")
            return None, load_gallery()
            
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            try:
                generated_image = pipe(
                    prompt=[filtered_prompt],
                    generator=torch.Generator().manual_seed(int(seed)),
                    num_inference_steps=int(steps),
                    guidance_scale=float(scales),
                    height=int(height),
                    width=int(width),
                    max_sequence_length=256
                ).images[0]
                
                saved_path = save_image(generated_image)
                if saved_path is None:
                    print("Warning: Failed to save generated image")
                
                return generated_image, load_gallery()
            except Exception as e:
                print(f"Error in image generation: {str(e)}")
                return None, load_gallery()
    
    def update_seed():
        return get_random_seed()

    generate_btn.click(
        process_and_save_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=[output, gallery]
    )
    
    randomize_seed.click(
        update_seed,
        outputs=[seed]
    )
    
    generate_btn.click(
        update_seed,
        outputs=[seed]
    )

if __name__ == "__main__":
    demo.launch(allowed_paths=[PERSISTENT_DIR])