Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,604 Bytes
176edce 0b63713 176edce f8844a3 8d2510b 0b63713 ac3894a 0e7941e 176edce ac3894a 176edce ac3894a 176edce 343fdaf 0b63713 8d2510b 176edce 343fdaf f8844a3 176edce 343fdaf 176edce 343fdaf 8d2510b de7fb8a f8844a3 35695a2 0e7941e f8844a3 0e7941e f8844a3 0e7941e f8844a3 0e7941e f8844a3 de7fb8a 35695a2 5e92500 35695a2 8f39f51 5e92500 35695a2 8f39f51 35695a2 5e92500 0b63713 35695a2 5e92500 35695a2 0b63713 35695a2 66fcae2 35695a2 66fcae2 35695a2 47297cd 35695a2 47297cd 35695a2 47297cd 35695a2 47297cd 35695a2 47297cd 35695a2 47297cd de7fb8a 8d2510b 0b63713 0b34ea3 ac3894a 0b34ea3 ac3894a 0b34ea3 ac3894a 0b34ea3 0b63713 0b34ea3 0b63713 2bfd5d9 0e7941e 6bae606 0e7941e 8d2510b b331133 8d2510b 2bfd5d9 0e7941e 2bfd5d9 f8844a3 2bfd5d9 f8844a3 2bfd5d9 920bbb9 2bfd5d9 3ec2621 0b63713 8d2510b 3ec2621 0b34ea3 8d2510b 0b34ea3 f8844a3 18f2392 3ec2621 0b63713 3ec2621 0b63713 3ec2621 18f2392 343fdaf 176edce 88fe7fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
# Use PERSISTENT_DIR environment variable for Spaces
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
def filter_prompt(prompt):
# ๋ถ์ ์ ํ ํค์๋ ๋ชฉ๋ก
inappropriate_keywords = [
# ์๋/์ฑ์ ํค์๋
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
"erotic", "sensual", "seductive", "provocative", "intimate",
# ํญ๋ ฅ์ ํค์๋
"violence", "gore", "blood", "death", "kill", "murder", "torture",
# ๊ธฐํ ๋ถ์ ์ ํ ํค์๋
"drug", "suicide", "abuse", "hate", "discrimination"
]
prompt_lower = prompt.lower()
# ๋ถ์ ์ ํ ํค์๋ ์ฒดํฌ
for keyword in inappropriate_keywords:
if keyword in prompt_lower:
return False, "๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค."
return True, prompt
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
# Add safety checker
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
css = """
footer {display: none !important}
.gradio-container {
max-width: 1200px;
margin: auto;
}
.contain {
background: rgba(255, 255, 255, 0.05);
border-radius: 12px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
#gallery {
width: 100% !important;
max-width: 100% !important;
overflow: visible !important;
}
#gallery > div {
width: 100% !important;
max-width: none !important;
}
#gallery > div > div {
width: 100% !important;
display: grid !important;
grid-template-columns: repeat(5, 1fr) !important;
gap: 16px !important;
padding: 16px !important;
}
.gallery-container {
background: rgba(255, 255, 255, 0.05);
border-radius: 8px;
margin-top: 10px;
width: 100% !important;
box-sizing: border-box !important;
}
.gallery-item {
width: 100% !important;
aspect-ratio: 1 !important;
overflow: hidden !important;
border-radius: 4px !important;
}
.gallery-item img {
width: 100% !important;
height: 100% !important;
object-fit: cover !important;
border-radius: 4px !important;
transition: transform 0.2s;
}
.gallery-item img:hover {
transform: scale(1.05);
}
.output-image {
width: 100% !important;
max-width: 100% !important;
}
.contain > div {
width: 100% !important;
max-width: 100% !important;
}
.fixed-width {
width: 100% !important;
max-width: 100% !important;
}
.gallery-container::-webkit-scrollbar {
display: none !important;
}
.gallery-container {
-ms-overflow-style: none !important;
scrollbar-width: none !important;
}
#gallery > div {
width: 100% !important;
max-width: 100% !important;
}
#gallery > div > div {
width: 100% !important;
max-width: 100% !important;
}
"""
def save_image(image):
"""Save the generated image and return the path"""
try:
if not os.path.exists(gallery_path):
try:
os.makedirs(gallery_path, exist_ok=True)
except Exception as e:
print(f"Failed to create gallery directory: {str(e)}")
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
try:
if isinstance(image, Image.Image):
image.save(filepath, "PNG", quality=100)
else:
image = Image.fromarray(image)
image.save(filepath, "PNG", quality=100)
if not os.path.exists(filepath):
print(f"Warning: Failed to verify saved image at {filepath}")
return None
return filepath
except Exception as e:
print(f"Failed to save image: {str(e)}")
return None
except Exception as e:
print(f"Error in save_image: {str(e)}")
return None
def load_gallery():
"""Load all images from the gallery directory"""
try:
os.makedirs(gallery_path, exist_ok=True)
image_files = []
for f in os.listdir(gallery_path):
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
full_path = os.path.join(gallery_path, f)
image_files.append((full_path, os.path.getmtime(full_path)))
image_files.sort(key=lambda x: x[1], reverse=True)
return [f[0] for f in image_files]
except Exception as e:
print(f"Error loading gallery: {str(e)}")
return []
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
# Create Gradio interface with a left sidebar for inputs
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">FLUX Image Eternity</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
gr.HTML("""
<div style="color: red; margin-bottom: 1em; text-align: center; padding: 10px; background: rgba(255,0,0,0.1); border-radius: 8px;">
โ ๏ธ Explicit or inappropriate content cannot be generated.
</div>
""")
with gr.Sidebar():
# ์ข์ธก ์ฌ์ด๋๋ฐ ๋ฉ๋ด: ํ๋กฌํํธ ์
๋ ฅ ๋ฐ ๊ณ ๊ธ ์ค์
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed (random by default, set for reproducibility)",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("๐ฒ Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"โจ Generate Image",
elem_classes=["generate-btn"]
)
# ์ธํฐ๋ํฐ๋ธ ์์ ํ๋กฌํํธ ์์ญ
gr.Markdown("## Example Prompts")
example_prompts = [
{
"title": "๐
Cinematic Landscape",
"prompt": "A breathtaking mountain vista at golden hour with dramatic sunbeams piercing through a sea of clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, and an award-winning landscape composition reminiscent of a masterpiece captured on Hasselblad."
},
{
"title": "๐ผ๏ธ Fantasy Portrait",
"prompt": "An ethereal portrait of an elven queen with flowing silver hair, adorned with shimmering luminescent crystals and an intricate crown of twisted gold and moonstone, bathed in soft, magical lighting with highly detailed facial features that evoke ancient mysticism."
},
{
"title": "๐ Cyberpunk Scene",
"prompt": "A neon-drenched cyberpunk street market in torrential rain, with holographic advertisements reflecting off wet asphalt, futuristic street vendors, and a dense urban atmosphere reminiscent of Blade Runner 2049, all rendered in vivid cinematic style."
},
{
"title": "๐จ Abstract Art",
"prompt": "A vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples, teals, and gold, with geometric patterns emerging from chaosโan explosion of creativity that evokes modern expressionist masterpieces."
},
{
"title": "๐ฟ Macro Nature",
"prompt": "An extreme macro photograph capturing a dewdrop delicately perched on a butterfly wing, revealing intricate wing scales and rainbow refractions of light, set against a naturally blurred bokeh background, like a high-end studio shot."
},
{
"title": "๐ค Futuristic Cityscape",
"prompt": "A vibrant futuristic cityscape at night illuminated by neon lights, holographic billboards, and flying vehicles; towering skyscrapers and a bustling urban atmosphere rendered in ultra-detailed, cinematic style."
},
{
"title": "๐ง Enchanted Forest",
"prompt": "A mystical, enchanted forest bathed in soft, ethereal light, filled with luminescent flora, magical creatures, and ancient trees draped in mossโevoking a dreamlike fairy tale ambiance with intricate details."
},
{
"title": "๐ Cosmic Explosion",
"prompt": "A stunning cosmic explosion in deep space, with vibrant nebulae, swirling galaxies, and a burst of radiant colors illuminating the cosmosโcaptured in high-resolution digital art that is both ethereal and awe-inspiring."
}
]
# ๊ฐ ์์ ๋ง๋ค ๋ฒํผ์ ๋ง๋ค์ด ํด๋ฆญ ์ prompt์ ํด๋น ๋ฌธ๊ตฌ๊ฐ ์๋ ์ฝ์
๋๋๋ก ํจ
for ex in example_prompts:
btn = gr.Button(ex["title"], variant="secondary")
# ๊ธฐ๋ณธ ๋งค๊ฐ๋ณ์๋ก ex["prompt"]๋ฅผ ์บก์ฒํ์ฌ, ๋ฒํผ ํด๋ฆญ ์ ํ๋กฌํํธ์ ํด๋น ํ
์คํธ๋ฅผ ๋ฐํ
btn.click(fn=lambda prompt_text=ex["prompt"]: prompt_text, inputs=[], outputs=prompt)
gr.Markdown(f"*{ex['prompt']}*")
with gr.Column():
# ๋ฉ์ธ ์์ญ: ์์ฑ๋ ์ด๋ฏธ์ง์ ๊ฐค๋ฌ๋ฆฌ ํ์
output = gr.Image(
label="Generated Image",
elem_id="output-image",
elem_classes=["output-image", "fixed-width"]
)
gallery = gr.Gallery(
label="Generated Images Gallery",
show_label=True,
elem_id="gallery",
columns=[4],
rows=[2],
height="auto",
object_fit="cover",
elem_classes=["gallery-container", "fixed-width"]
)
gallery.value = load_gallery()
@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
# ํ๋กฌํํธ ํํฐ๋ง
is_safe, filtered_prompt = filter_prompt(prompt)
if not is_safe:
gr.Warning("๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค.")
return None, load_gallery()
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe(
prompt=[filtered_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
saved_path = save_image(generated_image)
if saved_path is None:
print("Warning: Failed to save generated image")
return generated_image, load_gallery()
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None, load_gallery()
def update_seed():
return get_random_seed()
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=[output, gallery]
)
randomize_seed.click(
update_seed,
outputs=[seed]
)
generate_btn.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.launch(allowed_paths=[PERSISTENT_DIR])
|