Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ from torch import Tensor, nn
|
|
19 |
from transformers import CLIPTextModel, CLIPTokenizer
|
20 |
from transformers import T5EncoderModel, T5Tokenizer
|
21 |
from transformers import pipeline, AutoTokenizer, MarianMTModel
|
22 |
-
|
23 |
|
24 |
class HFEmbedder(nn.Module):
|
25 |
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
@@ -778,7 +778,6 @@ TRANSLATORS = {
|
|
778 |
# 번역기 캐시 딕셔너리
|
779 |
translators_cache = {}
|
780 |
|
781 |
-
# 번역기 초기화 부분 수정
|
782 |
def get_translator(lang):
|
783 |
if lang == "English":
|
784 |
return None
|
@@ -786,23 +785,39 @@ def get_translator(lang):
|
|
786 |
if lang not in translators_cache:
|
787 |
try:
|
788 |
model_name = TRANSLATORS[lang]
|
789 |
-
tokenizer =
|
790 |
-
model = MarianMTModel.from_pretrained(
|
791 |
-
model_name,
|
792 |
-
torch_dtype=torch.float32, # float16 대신 float32 사용
|
793 |
-
low_cpu_mem_usage=True
|
794 |
-
).to("cpu") # 명시적으로 CPU 지정
|
795 |
|
796 |
-
translators_cache[lang] =
|
797 |
-
"
|
798 |
-
|
799 |
-
|
|
|
|
|
800 |
except Exception as e:
|
801 |
print(f"Error loading translator for {lang}: {e}")
|
802 |
return None
|
803 |
|
804 |
return translators_cache[lang]
|
805 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
806 |
def translate_text(text, translator_info):
|
807 |
if translator_info is None:
|
808 |
return text
|
@@ -823,23 +838,6 @@ def translate_text(text, translator_info):
|
|
823 |
print(f"Translation error: {e}")
|
824 |
return text
|
825 |
|
826 |
-
def translate_prompt(prompt, source_lang):
|
827 |
-
if source_lang == "English":
|
828 |
-
return prompt
|
829 |
-
|
830 |
-
translator = get_translator(source_lang)
|
831 |
-
if translator is None:
|
832 |
-
print(f"No translator available for {source_lang}, using original prompt")
|
833 |
-
return prompt
|
834 |
-
|
835 |
-
try:
|
836 |
-
translated = translate_text(prompt, translator)
|
837 |
-
print(f"Translated from {source_lang}: {translated}")
|
838 |
-
return translated
|
839 |
-
except Exception as e:
|
840 |
-
print(f"Translation error: {e}")
|
841 |
-
return prompt
|
842 |
-
|
843 |
@spaces.GPU
|
844 |
@torch.no_grad()
|
845 |
def generate_image(
|
@@ -847,13 +845,19 @@ def generate_image(
|
|
847 |
do_img2img, init_image, image2image_strength, resize_img,
|
848 |
progress=gr.Progress(track_tqdm=True),
|
849 |
):
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
|
|
|
|
|
|
|
|
855 |
translated_prompt = prompt
|
856 |
|
|
|
|
|
857 |
|
858 |
if seed == 0:
|
859 |
seed = int(random.random() * 1000000)
|
@@ -910,11 +914,10 @@ footer {
|
|
910 |
visibility: hidden;
|
911 |
}
|
912 |
"""
|
913 |
-
|
914 |
-
def create_demo():
|
915 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
916 |
-
|
917 |
-
|
918 |
with gr.Row():
|
919 |
with gr.Column():
|
920 |
source_lang = gr.Dropdown(
|
@@ -923,6 +926,8 @@ def create_demo():
|
|
923 |
label="Source Language"
|
924 |
)
|
925 |
|
|
|
|
|
926 |
prompt = gr.Textbox(
|
927 |
label="Prompt",
|
928 |
value="A cute and fluffy golden retriever puppy sitting upright..."
|
@@ -953,16 +958,16 @@ def create_demo():
|
|
953 |
output_seed = gr.Text(label="Used Seed")
|
954 |
translated_prompt = gr.Text(label="Translated Prompt")
|
955 |
|
956 |
-
|
957 |
examples = [
|
958 |
-
# English
|
959 |
-
["A
|
960 |
-
# Korean
|
961 |
["벚꽃이 흩날리는 서울의 봄 풍경", "Korean", 768, 768, 3.5, 30, 0, False, None, 0.8, True],
|
962 |
-
# Spanish
|
963 |
-
["
|
964 |
-
# Chinese
|
965 |
-
["
|
966 |
]
|
967 |
|
968 |
gr.Examples(
|
@@ -973,9 +978,11 @@ def create_demo():
|
|
973 |
],
|
974 |
outputs=[output_image, output_seed, translated_prompt],
|
975 |
fn=generate_image,
|
976 |
-
cache_examples=
|
977 |
)
|
978 |
|
|
|
|
|
979 |
do_img2img.change(
|
980 |
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
|
981 |
inputs=[do_img2img],
|
|
|
19 |
from transformers import CLIPTextModel, CLIPTokenizer
|
20 |
from transformers import T5EncoderModel, T5Tokenizer
|
21 |
from transformers import pipeline, AutoTokenizer, MarianMTModel
|
22 |
+
from transformers import MarianMTModel, MarianTokenizer
|
23 |
|
24 |
class HFEmbedder(nn.Module):
|
25 |
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
|
|
778 |
# 번역기 캐시 딕셔너리
|
779 |
translators_cache = {}
|
780 |
|
|
|
781 |
def get_translator(lang):
|
782 |
if lang == "English":
|
783 |
return None
|
|
|
785 |
if lang not in translators_cache:
|
786 |
try:
|
787 |
model_name = TRANSLATORS[lang]
|
788 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
789 |
+
model = MarianMTModel.from_pretrained(model_name).to("cpu")
|
|
|
|
|
|
|
|
|
790 |
|
791 |
+
translators_cache[lang] = pipeline(
|
792 |
+
"translation",
|
793 |
+
model=model,
|
794 |
+
tokenizer=tokenizer,
|
795 |
+
device="cpu"
|
796 |
+
)
|
797 |
except Exception as e:
|
798 |
print(f"Error loading translator for {lang}: {e}")
|
799 |
return None
|
800 |
|
801 |
return translators_cache[lang]
|
802 |
|
803 |
+
def translate_prompt(prompt, source_lang):
|
804 |
+
if source_lang == "English":
|
805 |
+
return prompt
|
806 |
+
|
807 |
+
translator = get_translator(source_lang)
|
808 |
+
if translator is None:
|
809 |
+
print(f"No translator available for {source_lang}, using original prompt")
|
810 |
+
return prompt
|
811 |
+
|
812 |
+
try:
|
813 |
+
translated = translator(prompt, max_length=512)[0]['translation_text']
|
814 |
+
print(f"Original: {prompt}")
|
815 |
+
print(f"Translated from {source_lang}: {translated}")
|
816 |
+
return translated
|
817 |
+
except Exception as e:
|
818 |
+
print(f"Translation error: {e}")
|
819 |
+
return prompt
|
820 |
+
|
821 |
def translate_text(text, translator_info):
|
822 |
if translator_info is None:
|
823 |
return text
|
|
|
838 |
print(f"Translation error: {e}")
|
839 |
return text
|
840 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
841 |
@spaces.GPU
|
842 |
@torch.no_grad()
|
843 |
def generate_image(
|
|
|
845 |
do_img2img, init_image, image2image_strength, resize_img,
|
846 |
progress=gr.Progress(track_tqdm=True),
|
847 |
):
|
848 |
+
# 번역 처리
|
849 |
+
if source_lang != "English":
|
850 |
+
try:
|
851 |
+
translated_prompt = translate_prompt(prompt, source_lang)
|
852 |
+
print(f"Using translated prompt: {translated_prompt}")
|
853 |
+
except Exception as e:
|
854 |
+
print(f"Translation failed: {e}")
|
855 |
+
translated_prompt = prompt
|
856 |
+
else:
|
857 |
translated_prompt = prompt
|
858 |
|
859 |
+
|
860 |
+
|
861 |
|
862 |
if seed == 0:
|
863 |
seed = int(random.random() * 1000000)
|
|
|
914 |
visibility: hidden;
|
915 |
}
|
916 |
"""
|
917 |
+
ef create_demo():
|
|
|
918 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
919 |
+
gr.Markdown("# Multilingual FLUX (36 Languages Support)")
|
920 |
+
|
921 |
with gr.Row():
|
922 |
with gr.Column():
|
923 |
source_lang = gr.Dropdown(
|
|
|
926 |
label="Source Language"
|
927 |
)
|
928 |
|
929 |
+
|
930 |
+
|
931 |
prompt = gr.Textbox(
|
932 |
label="Prompt",
|
933 |
value="A cute and fluffy golden retriever puppy sitting upright..."
|
|
|
958 |
output_seed = gr.Text(label="Used Seed")
|
959 |
translated_prompt = gr.Text(label="Translated Prompt")
|
960 |
|
961 |
+
|
962 |
examples = [
|
963 |
+
# English
|
964 |
+
["A beautiful sunset over mountains", "English", 768, 768, 3.5, 30, 0, False, None, 0.8, True],
|
965 |
+
# Korean
|
966 |
["벚꽃이 흩날리는 서울의 봄 풍경", "Korean", 768, 768, 3.5, 30, 0, False, None, 0.8, True],
|
967 |
+
# Spanish
|
968 |
+
["Un hermoso atardecer en la playa", "Spanish", 768, 768, 3.5, 30, 0, False, None, 0.8, True],
|
969 |
+
# Chinese
|
970 |
+
["美丽的中国长城日落景色", "Chinese", 768, 768, 3.5, 30, 0, False, None, 0.8, True]
|
971 |
]
|
972 |
|
973 |
gr.Examples(
|
|
|
978 |
],
|
979 |
outputs=[output_image, output_seed, translated_prompt],
|
980 |
fn=generate_image,
|
981 |
+
cache_examples=False
|
982 |
)
|
983 |
|
984 |
+
|
985 |
+
|
986 |
do_img2img.change(
|
987 |
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
|
988 |
inputs=[do_img2img],
|