Spaces:
Running
on
Zero
Running
on
Zero
Delete app-old-backup.py
Browse files- app-old-backup.py +0 -355
app-old-backup.py
DELETED
@@ -1,355 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import logging
|
3 |
-
from datetime import datetime
|
4 |
-
from pathlib import Path
|
5 |
-
import gradio as gr
|
6 |
-
import torch
|
7 |
-
import torchaudio
|
8 |
-
import os
|
9 |
-
import requests
|
10 |
-
from transformers import pipeline
|
11 |
-
import tempfile
|
12 |
-
import numpy as np
|
13 |
-
from einops import rearrange
|
14 |
-
import cv2
|
15 |
-
from scipy.io import wavfile
|
16 |
-
import librosa
|
17 |
-
import json
|
18 |
-
from typing import Optional, Tuple, List
|
19 |
-
import atexit
|
20 |
-
|
21 |
-
try:
|
22 |
-
import mmaudio
|
23 |
-
except ImportError:
|
24 |
-
os.system("pip install -e .")
|
25 |
-
import mmaudio
|
26 |
-
|
27 |
-
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
|
28 |
-
setup_eval_logging)
|
29 |
-
from mmaudio.model.flow_matching import FlowMatching
|
30 |
-
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
31 |
-
from mmaudio.model.sequence_config import SequenceConfig
|
32 |
-
from mmaudio.model.utils.features_utils import FeaturesUtils
|
33 |
-
|
34 |
-
# 로깅 설정
|
35 |
-
logging.basicConfig(
|
36 |
-
level=logging.INFO,
|
37 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
38 |
-
)
|
39 |
-
log = logging.getLogger()
|
40 |
-
|
41 |
-
# CUDA 설정
|
42 |
-
if torch.cuda.is_available():
|
43 |
-
device = torch.device("cuda")
|
44 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
45 |
-
torch.backends.cudnn.allow_tf32 = True
|
46 |
-
torch.backends.cudnn.benchmark = True
|
47 |
-
else:
|
48 |
-
device = torch.device("cpu")
|
49 |
-
|
50 |
-
dtype = torch.bfloat16
|
51 |
-
|
52 |
-
# 모델 설정
|
53 |
-
model: ModelConfig = all_model_cfg['large_44k_v2']
|
54 |
-
model.download_if_needed()
|
55 |
-
output_dir = Path('./output/gradio')
|
56 |
-
|
57 |
-
setup_eval_logging()
|
58 |
-
|
59 |
-
# 번역기 및 Pixabay API 설정
|
60 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
61 |
-
PIXABAY_API_KEY = "33492762-a28a596ec4f286f84cd328b17"
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
def cleanup_temp_files():
|
66 |
-
temp_dir = tempfile.gettempdir()
|
67 |
-
for file in os.listdir(temp_dir):
|
68 |
-
if file.endswith(('.mp4', '.flac')):
|
69 |
-
try:
|
70 |
-
os.remove(os.path.join(temp_dir, file))
|
71 |
-
except:
|
72 |
-
pass
|
73 |
-
|
74 |
-
atexit.register(cleanup_temp_files)
|
75 |
-
|
76 |
-
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
77 |
-
with torch.cuda.device(device):
|
78 |
-
seq_cfg = model.seq_cfg
|
79 |
-
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
|
80 |
-
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
|
81 |
-
log.info(f'Loaded weights from {model.model_path}')
|
82 |
-
|
83 |
-
feature_utils = FeaturesUtils(
|
84 |
-
tod_vae_ckpt=model.vae_path,
|
85 |
-
synchformer_ckpt=model.synchformer_ckpt,
|
86 |
-
enable_conditions=True,
|
87 |
-
mode=model.mode,
|
88 |
-
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
89 |
-
need_vae_encoder=False
|
90 |
-
).to(device, dtype).eval()
|
91 |
-
|
92 |
-
return net, feature_utils, seq_cfg
|
93 |
-
|
94 |
-
net, feature_utils, seq_cfg = get_model()
|
95 |
-
|
96 |
-
|
97 |
-
# search_videos 함수 수정
|
98 |
-
@torch.no_grad()
|
99 |
-
def search_videos(query):
|
100 |
-
try:
|
101 |
-
# CPU에서 번역 실행
|
102 |
-
query = translate_prompt(query)
|
103 |
-
return search_pixabay_videos(query, PIXABAY_API_KEY)
|
104 |
-
except Exception as e:
|
105 |
-
logging.error(f"Video search error: {e}")
|
106 |
-
return []
|
107 |
-
|
108 |
-
# translate_prompt 함수도 수정
|
109 |
-
def translate_prompt(text):
|
110 |
-
try:
|
111 |
-
if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text):
|
112 |
-
# CPU에서 번역 실행
|
113 |
-
with torch.no_grad():
|
114 |
-
translation = translator(text)[0]['translation_text']
|
115 |
-
return translation
|
116 |
-
return text
|
117 |
-
except Exception as e:
|
118 |
-
logging.error(f"Translation error: {e}")
|
119 |
-
return text
|
120 |
-
|
121 |
-
# 디바이스 설정 부분 수정
|
122 |
-
if torch.cuda.is_available():
|
123 |
-
device = torch.device("cuda")
|
124 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
125 |
-
torch.backends.cudnn.allow_tf32 = True
|
126 |
-
torch.backends.cudnn.benchmark = True
|
127 |
-
else:
|
128 |
-
device = torch.device("cpu")
|
129 |
-
|
130 |
-
# 번역기 설정 수정
|
131 |
-
translator = pipeline("translation",
|
132 |
-
model="Helsinki-NLP/opus-mt-ko-en",
|
133 |
-
device="cpu") # 명시적으로 CPU 지정
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
def search_pixabay_videos(query, api_key):
|
138 |
-
try:
|
139 |
-
base_url = "https://pixabay.com/api/videos/"
|
140 |
-
params = {
|
141 |
-
"key": api_key,
|
142 |
-
"q": query,
|
143 |
-
"per_page": 40
|
144 |
-
}
|
145 |
-
|
146 |
-
response = requests.get(base_url, params=params)
|
147 |
-
if response.status_code == 200:
|
148 |
-
data = response.json()
|
149 |
-
return [video['videos']['large']['url'] for video in data.get('hits', [])]
|
150 |
-
return []
|
151 |
-
except Exception as e:
|
152 |
-
logging.error(f"Pixabay API error: {e}")
|
153 |
-
return []
|
154 |
-
|
155 |
-
|
156 |
-
@spaces.GPU
|
157 |
-
@torch.inference_mode()
|
158 |
-
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
159 |
-
cfg_strength: float, duration: float):
|
160 |
-
prompt = translate_prompt(prompt)
|
161 |
-
negative_prompt = translate_prompt(negative_prompt)
|
162 |
-
|
163 |
-
rng = torch.Generator(device=device)
|
164 |
-
rng.manual_seed(seed)
|
165 |
-
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
166 |
-
|
167 |
-
clip_frames, sync_frames, duration = load_video(video, duration)
|
168 |
-
clip_frames = clip_frames.unsqueeze(0)
|
169 |
-
sync_frames = sync_frames.unsqueeze(0)
|
170 |
-
seq_cfg.duration = duration
|
171 |
-
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
172 |
-
|
173 |
-
audios = generate(clip_frames,
|
174 |
-
sync_frames, [prompt],
|
175 |
-
negative_text=[negative_prompt],
|
176 |
-
feature_utils=feature_utils,
|
177 |
-
net=net,
|
178 |
-
fm=fm,
|
179 |
-
rng=rng,
|
180 |
-
cfg_strength=cfg_strength)
|
181 |
-
audio = audios.float().cpu()[0]
|
182 |
-
|
183 |
-
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
184 |
-
make_video(video,
|
185 |
-
video_save_path,
|
186 |
-
audio,
|
187 |
-
sampling_rate=seq_cfg.sampling_rate,
|
188 |
-
duration_sec=seq_cfg.duration)
|
189 |
-
return video_save_path
|
190 |
-
|
191 |
-
@spaces.GPU
|
192 |
-
@torch.inference_mode()
|
193 |
-
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
|
194 |
-
duration: float):
|
195 |
-
prompt = translate_prompt(prompt)
|
196 |
-
negative_prompt = translate_prompt(negative_prompt)
|
197 |
-
|
198 |
-
rng = torch.Generator(device=device)
|
199 |
-
rng.manual_seed(seed)
|
200 |
-
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
201 |
-
|
202 |
-
clip_frames = sync_frames = None
|
203 |
-
seq_cfg.duration = duration
|
204 |
-
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
205 |
-
|
206 |
-
audios = generate(clip_frames,
|
207 |
-
sync_frames, [prompt],
|
208 |
-
negative_text=[negative_prompt],
|
209 |
-
feature_utils=feature_utils,
|
210 |
-
net=net,
|
211 |
-
fm=fm,
|
212 |
-
rng=rng,
|
213 |
-
cfg_strength=cfg_strength)
|
214 |
-
audio = audios.float().cpu()[0]
|
215 |
-
|
216 |
-
audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name
|
217 |
-
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
|
218 |
-
return audio_save_path
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
# CSS 스타일 수정
|
223 |
-
custom_css = """
|
224 |
-
.gradio-container {
|
225 |
-
background: linear-gradient(45deg, #1a1a1a, #2a2a2a);
|
226 |
-
border-radius: 15px;
|
227 |
-
box-shadow: 0 8px 32px rgba(0,0,0,0.3);
|
228 |
-
color: #e0e0e0;
|
229 |
-
}
|
230 |
-
|
231 |
-
.input-container, .output-container {
|
232 |
-
background: rgba(40, 40, 40, 0.95);
|
233 |
-
backdrop-filter: blur(10px);
|
234 |
-
border-radius: 10px;
|
235 |
-
padding: 20px;
|
236 |
-
transform-style: preserve-3d;
|
237 |
-
transition: transform 0.3s ease;
|
238 |
-
border: 1px solid rgba(255, 255, 255, 0.1);
|
239 |
-
}
|
240 |
-
|
241 |
-
.input-container:hover {
|
242 |
-
transform: translateZ(20px);
|
243 |
-
box-shadow: 0 8px 32px rgba(0,0,0,0.5);
|
244 |
-
}
|
245 |
-
|
246 |
-
.gallery-item {
|
247 |
-
transition: transform 0.3s ease;
|
248 |
-
border-radius: 8px;
|
249 |
-
overflow: hidden;
|
250 |
-
background: #2a2a2a;
|
251 |
-
}
|
252 |
-
|
253 |
-
.gallery-item:hover {
|
254 |
-
transform: scale(1.05);
|
255 |
-
box-shadow: 0 4px 15px rgba(0,0,0,0.4);
|
256 |
-
}
|
257 |
-
|
258 |
-
.tabs {
|
259 |
-
background: rgba(30, 30, 30, 0.95);
|
260 |
-
border-radius: 10px;
|
261 |
-
padding: 10px;
|
262 |
-
border: 1px solid rgba(255, 255, 255, 0.05);
|
263 |
-
}
|
264 |
-
|
265 |
-
button {
|
266 |
-
background: linear-gradient(45deg, #2196F3, #1976D2);
|
267 |
-
border: none;
|
268 |
-
border-radius: 5px;
|
269 |
-
transition: all 0.3s ease;
|
270 |
-
color: white;
|
271 |
-
}
|
272 |
-
|
273 |
-
button:hover {
|
274 |
-
transform: translateY(-2px);
|
275 |
-
box-shadow: 0 4px 15px rgba(33,150,243,0.3);
|
276 |
-
}
|
277 |
-
|
278 |
-
/* 텍스트 입력 필드 스타일 */
|
279 |
-
textarea, input[type="text"], input[type="number"] {
|
280 |
-
background: rgba(30, 30, 30, 0.95) !important;
|
281 |
-
border: 1px solid rgba(255, 255, 255, 0.1) !important;
|
282 |
-
color: #e0e0e0 !important;
|
283 |
-
border-radius: 5px !important;
|
284 |
-
}
|
285 |
-
|
286 |
-
/* 레이블 스타일 */
|
287 |
-
label {
|
288 |
-
color: #e0e0e0 !important;
|
289 |
-
}
|
290 |
-
|
291 |
-
/* 갤러리 그리드 스타일 */
|
292 |
-
.gallery {
|
293 |
-
background: rgba(30, 30, 30, 0.95);
|
294 |
-
padding: 15px;
|
295 |
-
border-radius: 10px;
|
296 |
-
border: 1px solid rgba(255, 255, 255, 0.05);
|
297 |
-
}
|
298 |
-
"""
|
299 |
-
|
300 |
-
text_to_audio_tab = gr.Interface(
|
301 |
-
fn=text_to_audio,
|
302 |
-
inputs=[
|
303 |
-
gr.Textbox(label="Prompt(한글지원)"),
|
304 |
-
gr.Textbox(label="Negative Prompt"),
|
305 |
-
gr.Number(label="Seed", value=0),
|
306 |
-
gr.Number(label="Steps", value=25),
|
307 |
-
gr.Number(label="Guidance Scale", value=4.5),
|
308 |
-
gr.Number(label="Duration (sec)", value=8),
|
309 |
-
],
|
310 |
-
outputs=gr.Audio(label="Generated Audio"),
|
311 |
-
css=custom_css
|
312 |
-
)
|
313 |
-
|
314 |
-
|
315 |
-
video_to_audio_tab = gr.Interface(
|
316 |
-
fn=video_to_audio,
|
317 |
-
inputs=[
|
318 |
-
gr.Video(label="Input Video"),
|
319 |
-
gr.Textbox(label="Prompt(한글지원)"),
|
320 |
-
gr.Textbox(label="Negative Prompt", value="music"),
|
321 |
-
gr.Number(label="Seed", value=0),
|
322 |
-
gr.Number(label="Steps", value=25),
|
323 |
-
gr.Number(label="Guidance Scale", value=4.5),
|
324 |
-
gr.Number(label="Duration (sec)", value=8),
|
325 |
-
],
|
326 |
-
outputs=gr.Video(label="Generated Result"),
|
327 |
-
css=custom_css
|
328 |
-
)
|
329 |
-
|
330 |
-
# 인터페이스 정의 수정 (영문으로 변경)
|
331 |
-
video_search_tab = gr.Interface(
|
332 |
-
fn=search_videos,
|
333 |
-
inputs=gr.Textbox(label="Search Query(한글지원)"),
|
334 |
-
outputs=gr.Gallery(label="Search Results", columns=4, rows=20),
|
335 |
-
css=custom_css,
|
336 |
-
api_name=False
|
337 |
-
)
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
# CSS 스타일 수정
|
342 |
-
css = """
|
343 |
-
footer {
|
344 |
-
visibility: hidden;
|
345 |
-
}
|
346 |
-
""" + custom_css # 기존 custom_css와 새로운 css를 결합
|
347 |
-
|
348 |
-
# 메인 실행 부분 수정
|
349 |
-
if __name__ == "__main__":
|
350 |
-
gr.TabbedInterface(
|
351 |
-
[video_search_tab, video_to_audio_tab, text_to_audio_tab],
|
352 |
-
["Video Search", "Video-to-Audio", "Text-to-Audio"],
|
353 |
-
theme="Yntec/HaleyCH_Theme_Orange",
|
354 |
-
css=css
|
355 |
-
).launch(allowed_paths=[output_dir])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|