Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from diffusers import DiffusionPipeline | |
import spaces | |
# κΈ°λ³Έ μ€μ | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# λͺ¨λΈ λ‘λ | |
pipe = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=dtype | |
).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# νλ‘μ°μ°¨νΈ μμ | |
EXAMPLES = [ | |
{ | |
"title": "Business Workflow", | |
"prompt": """A hand-drawn style flowchart, vibrant colors, minimalistic icons. | |
BUSINESS WORKFLOW | |
βββ START [Green Button ~40px] | |
β βββ COLLECT REQUIREMENTS [Folder Icon] | |
β βββ ANALYZE DATA [Chart Icon] | |
βββ IMPLEMENTATION [Coding Symbol ~50px] | |
β βββ FRONTEND [Browser Icon] | |
β βββ BACKEND [Server Icon] | |
βββ TEST & INTEGRATION [Gear Icon ~45px] | |
βββ DEPLOY | |
βββ END [Checkered Flag ~40px]""", | |
"width": 1024, | |
"height": 1024 | |
}, | |
{ | |
"title": "Software Release Flow", | |
"prompt": """A hand-drawn style flowchart, pastel colors, arrows between stages. | |
SOFTWARE RELEASE | |
βββ FEATURE BRANCH [Git Branch Icon ~45px] | |
β βββ DEVELOPMENT [Code Editor] | |
β βββ UNIT TEST [Check Mark] | |
βββ MERGE TO MAIN [Pull Request Icon] | |
β βββ CI/CD [Pipeline Icon ~40px] | |
β βββ BUILD [Gear Icon] | |
βββ PRODUCTION | |
βββ DEPLOY [Cloud Upload Icon]""", | |
"width": 1024, | |
"height": 1024 | |
}, | |
{ | |
"title": "E-Commerce Checkout", | |
"prompt": """A hand-drawn style flowchart, light watercolor, user journey from cart to payment. | |
E-COMMERCE CHECKOUT | |
βββ CART [Shopping Cart ~40px] | |
β βββ LOGIN [User Icon] | |
β βββ ADDRESS [Location Pin] | |
βββ PAYMENT [Credit Card Icon ~45px] | |
β βββ VALIDATION [Lock Icon] | |
β βββ CONFIRMATION [Receipt Icon] | |
βββ ORDER COMPLETE | |
βββ THANK YOU [Smiley Icon]""", | |
"width": 1024, | |
"height": 1024 | |
}, | |
{ | |
"title": "Data Pipeline", | |
"prompt": """A hand-drawn style flowchart, tech-focused, neon highlights, showing data flow. | |
DATA PIPELINE | |
βββ INGESTION [Database Icon ~50px] | |
β βββ STREAMING [Kafka Symbol] | |
β βββ BATCH [CSV/JSON Files] | |
βββ TRANSFORMATION [Gear Icon ~45px] | |
β βββ CLEANING [Brush Icon] | |
β βββ AGGREGATION [Bar Graph] | |
βββ STORAGE [Cloud Icon ~50px] | |
βββ ANALYTICS | |
βββ DASHBOARDS [Monitor Icon]""", | |
"width": 1024, | |
"height": 1024 | |
}, | |
{ | |
"title": "Machine Learning Lifecycle", | |
"prompt": """A hand-drawn style flowchart, pastel palette, ML steps from data to deployment. | |
ML LIFECYCLE | |
βββ DATA COLLECTION [Folder Icon ~45px] | |
β βββ DATA CLEANING [Soap Icon] | |
β βββ FEATURE ENGINEERING [Puzzle Icon] | |
βββ MODEL TRAINING [Robot Icon ~50px] | |
β βββ HYPERPARAM TUNING [Dial Knob] | |
β βββ EVALUATION [Magnifier Icon] | |
βββ DEPLOYMENT [Cloud Icon ~45px] | |
βββ MONITORING | |
βββ FEEDBACK LOOP [Arrow Circle Icon]""", | |
"width": 1024, | |
"height": 1024 | |
} | |
] | |
# Convert examples to Gradio format (if needed) | |
GRADIO_EXAMPLES = [ | |
[example["prompt"], example["width"], example["height"]] | |
for example in EXAMPLES | |
] | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0 # νλ‘μ°μ°¨νΈ ν μ€νΈμ μ§μ€νλ, μμ λ‘μ΄ νν | |
).images[0] | |
return image, seed | |
# CSS μ€νμΌ (κΈ°μ‘΄ ꡬ쑰 μ μ§, λͺ μΉλ§ μΌλΆ μμ ) | |
css = """ | |
.container { | |
display: flex; | |
flex-direction: row; | |
height: 100%; | |
} | |
.input-column { | |
flex: 1; | |
padding: 20px; | |
border-right: 2px solid #eee; | |
max-width: 800px; | |
} | |
.examples-column { | |
flex: 1; | |
padding: 20px; | |
overflow-y: auto; | |
background: #f7f7f7; | |
} | |
.title { | |
text-align: center; | |
color: #2a2a2a; | |
padding: 20px; | |
font-size: 2.5em; | |
font-weight: bold; | |
background: linear-gradient(90deg, #f0f0f0 0%, #ffffff 100%); | |
border-bottom: 3px solid #ddd; | |
margin-bottom: 30px; | |
} | |
.subtitle { | |
text-align: center; | |
color: #666; | |
margin-bottom: 30px; | |
} | |
.input-box { | |
background: white; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 2px 10px rgba(0,0,0,0.1); | |
margin-bottom: 20px; | |
width: 100%; | |
} | |
.input-box textarea { | |
width: 100% !important; | |
min-width: 600px !important; | |
font-size: 14px !important; | |
line-height: 1.5 !important; | |
padding: 12px !important; | |
} | |
.example-card { | |
background: white; | |
padding: 15px; | |
margin: 10px 0; | |
border-radius: 8px; | |
box-shadow: 0 2px 5px rgba(0,0,0,0.05); | |
} | |
.example-title { | |
font-weight: bold; | |
color: #2a2a2a; | |
margin-bottom: 10px; | |
} | |
.contain { | |
max-width: 1400px !important; | |
margin: 0 auto !important; | |
} | |
.input-area { | |
flex: 2 !important; | |
} | |
.examples-area { | |
flex: 1 !important; | |
} | |
""" | |
# Gradio μΈν°νμ΄μ€ | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
""" | |
<div class="title">GINI Flowchart</div> | |
<div class="subtitle">Create professional process flowcharts using FLUX AI</div> | |
""") | |
with gr.Row(equal_height=True): | |
# μΌμͺ½ μ λ ₯ μ»¬λΌ | |
with gr.Column(elem_id="input-column", scale=2): | |
with gr.Group(elem_classes="input-box"): | |
prompt = gr.Text( | |
label="Flowchart Prompt", | |
placeholder="Enter your process flowchart structure...", | |
lines=10, | |
elem_classes="prompt-input" | |
) | |
run_button = gr.Button("Generate Flowchart", variant="primary") | |
result = gr.Image(label="Generated Flowchart") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
# μ€λ₯Έμͺ½ μμ μ»¬λΌ | |
with gr.Column(elem_id="examples-column", scale=1): | |
gr.Markdown("### Example Flowcharts") | |
for example in EXAMPLES: | |
with gr.Group(elem_classes="example-card"): | |
gr.Markdown(f"#### {example['title']}") | |
gr.Markdown(f"```\n{example['prompt']}\n```") | |
def create_example_handler(ex): | |
def handler(): | |
return { | |
prompt: ex["prompt"], | |
width: ex["width"], | |
height: ex["height"] | |
} | |
return handler | |
gr.Button("Use This Example", size="sm").click( | |
fn=create_example_handler(example), | |
outputs=[prompt, width, height] | |
) | |
# μ΄λ²€νΈ λ°μΈλ© (λ²νΌ ν΄λ¦ & ν μ€νΈλ°μ€ μν°) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[result, seed] | |
) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
show_error=True, | |
debug=True | |
) | |