File size: 26,711 Bytes
3707c06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
from gradio_client import Client, handle_file
import random
import tempfile
import os
import logging
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from huggingface_hub import hf_hub_download
from pathlib import Path
import torchaudio
from einops import rearrange
from scipy.io import wavfile
from transformers import pipeline
# ํ๊ฒฝ ๋ณ์ ์ค์ ์ผ๋ก torch.load ์ฒดํฌ ์ฐํ (์์ ํด๊ฒฐ์ฑ
)
os.environ["TRANSFORMERS_ALLOW_UNSAFE_DESERIALIZATION"] = "1"
# Spaces GPU
try:
import spaces
except:
# GPU ๋ฐ์ฝ๋ ์ดํฐ๊ฐ ์์ ๋๋ฅผ ์ํ ๋๋ฏธ ๋ฐ์ฝ๋ ์ดํฐ
class spaces:
@staticmethod
def GPU(duration=None):
def decorator(func):
return func
return decorator
# MMAudio imports
try:
import mmaudio
except ImportError:
os.system("pip install -e .")
import mmaudio
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils
# ControlNet ๋ชจ๋ธ ๋ก๋
try:
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
# ControlNet ์ค์ ๋ฐ ๋ก๋
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
loaded_keys = list(state_dict.keys())
result = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0", loaded_keys
)
model = result[0]
model = model.to(device="cuda", dtype=torch.float16)
# VAE ๋ก๋
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
# ํ์ดํ๋ผ์ธ ๋ก๋
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
OUTPAINT_MODEL_LOADED = True
except Exception as e:
logging.error(f"Failed to load outpainting models: {str(e)}")
OUTPAINT_MODEL_LOADED = False
# MMAudio ๋ชจ๋ธ ์ค์
if torch.cuda.is_available():
device = torch.device("cuda")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
else:
device = torch.device("cpu")
dtype = torch.bfloat16
# MMAudio ๋ชจ๋ธ ์ด๊ธฐํ
try:
model_mmaudio: ModelConfig = all_model_cfg['large_44k_v2']
model_mmaudio.download_if_needed()
output_dir = Path('./output/gradio')
setup_eval_logging()
# ๋ฒ์ญ๊ธฐ ์ค์
try:
translator = pipeline("translation",
model="Helsinki-NLP/opus-mt-ko-en",
device="cpu",
use_fast=True,
trust_remote_code=False)
except Exception as e:
logging.warning(f"Failed to load translation model: {e}")
translator = None
def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
with torch.cuda.device(device):
seq_cfg = model_mmaudio.seq_cfg
net: MMAudio = get_my_mmaudio(model_mmaudio.model_name).to(device, dtype).eval()
net.load_weights(torch.load(model_mmaudio.model_path, map_location=device, weights_only=True))
logging.info(f'Loaded weights from {model_mmaudio.model_path}')
feature_utils = FeaturesUtils(
tod_vae_ckpt=model_mmaudio.vae_path,
synchformer_ckpt=model_mmaudio.synchformer_ckpt,
enable_conditions=True,
mode=model_mmaudio.mode,
bigvgan_vocoder_ckpt=model_mmaudio.bigvgan_16k_path,
need_vae_encoder=False
).to(device, dtype).eval()
return net, feature_utils, seq_cfg
net_mmaudio, feature_utils, seq_cfg = get_mmaudio_model()
MMAUDIO_MODEL_LOADED = True
except Exception as e:
logging.error(f"Failed to load MMAudio models: {str(e)}")
MMAUDIO_MODEL_LOADED = False
translator = None
# API URLs
TEXT2IMG_API_URL = "http://211.233.58.201:7896"
VIDEO_API_URL = "http://211.233.58.201:7875"
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO)
# Image size presets
IMAGE_PRESETS = {
"์ปค์คํ
": {"width": 1024, "height": 1024},
"1:1 ์ ์ฌ๊ฐํ": {"width": 1024, "height": 1024},
"4:3 ํ์ค": {"width": 1024, "height": 768},
"16:9 ์์ด๋์คํฌ๋ฆฐ": {"width": 1024, "height": 576},
"9:16 ์ธ๋กํ": {"width": 576, "height": 1024},
"6:19 ํน์ ์ธ๋กํ": {"width": 324, "height": 1024},
"Instagram ์ ์ฌ๊ฐํ": {"width": 1080, "height": 1080},
"Instagram ์คํ ๋ฆฌ": {"width": 1080, "height": 1920},
"Instagram ๊ฐ๋กํ": {"width": 1080, "height": 566},
"Facebook ์ปค๋ฒ": {"width": 820, "height": 312},
"Twitter ํค๋": {"width": 1500, "height": 500},
"YouTube ์ธ๋ค์ผ": {"width": 1280, "height": 720},
"LinkedIn ๋ฐฐ๋": {"width": 1584, "height": 396},
}
def update_dimensions(preset):
if preset in IMAGE_PRESETS:
return IMAGE_PRESETS[preset]["width"], IMAGE_PRESETS[preset]["height"]
return 1024, 1024
def generate_text_to_image(prompt, width, height, guidance, inference_steps, seed):
if not prompt:
return None, "ํ๋กฌํํธ๋ฅผ ์
๋ ฅํด์ฃผ์ธ์"
try:
client = Client(TEXT2IMG_API_URL)
if seed == -1:
seed = random.randint(0, 9999999)
result = client.predict(
prompt=prompt,
width=int(width),
height=int(height),
guidance=float(guidance),
inference_steps=int(inference_steps),
seed=int(seed),
do_img2img=False,
init_image=None,
image2image_strength=0.8,
resize_img=True,
api_name="/generate_image"
)
return result[0], f"์ฌ์ฉ๋ ์๋: {result[1]}"
except Exception as e:
logging.error(f"Image generation error: {str(e)}")
return None, f"์ค๋ฅ: {str(e)}"
def generate_video_from_image(image, prompt="", length=4.0):
if image is None:
return None
try:
# ์ด๋ฏธ์ง ์ ์ฅ
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as fp:
temp_path = fp.name
Image.fromarray(image).save(temp_path)
# API ํธ์ถ
client = Client(VIDEO_API_URL)
result = client.predict(
input_image=handle_file(temp_path),
prompt=prompt if prompt else "Generate natural motion",
n_prompt="",
seed=random.randint(0, 9999999),
use_teacache=True,
video_length=float(length),
api_name="/process"
)
os.unlink(temp_path)
if result and len(result) > 0:
video_dict = result[0]
return video_dict.get("video") if isinstance(video_dict, dict) else None
except Exception as e:
logging.error(f"Video generation error: {str(e)}")
return None
def prepare_image_and_mask(image, width, height, overlap_percentage, alignment):
"""์ด๋ฏธ์ง์ ๋ง์คํฌ๋ฅผ ์ค๋นํ๋ ํจ์"""
if image is None:
return None, None
# PIL ์ด๋ฏธ์ง๋ก ๋ณํ
if isinstance(image, np.ndarray):
image = Image.fromarray(image).convert('RGB')
target_size = (width, height)
# ์ด๋ฏธ์ง๋ฅผ ํ๊ฒ ํฌ๊ธฐ์ ๋ง๊ฒ ์กฐ์
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# ์ด๋ฏธ์ง ๋ฆฌ์ฌ์ด์ฆ
source = image.resize((new_width, new_height), Image.LANCZOS)
# ์ค๋ฒ๋ฉ ๊ณ์ฐ
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# ์ ๋ ฌ์ ๋ฐ๋ฅธ ๋ง์ง ๊ณ์ฐ
if alignment == "๊ฐ์ด๋ฐ":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "์ผ์ชฝ":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "์ค๋ฅธ์ชฝ":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "์":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "์๋":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
# ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์์ฑ
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
# ๋ง์คํฌ ์์ฑ
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# ๋ง์คํฌ ์์ญ ๊ทธ๋ฆฌ๊ธฐ (์์ด ์ ๋ ฌ๊ณผ ๋งค์นญ)
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if alignment != "์ผ์ชฝ" else margin_x
right_overlap = margin_x + new_width - overlap_x if alignment != "์ค๋ฅธ์ชฝ" else margin_x + new_width
top_overlap = margin_y + overlap_y if alignment != "์" else margin_y
bottom_overlap = margin_y + new_height - overlap_y if alignment != "์๋" else margin_y + new_height
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
def preview_outpaint(image, width, height, overlap_percentage, alignment):
"""์์ํ์ธํ
๋ฏธ๋ฆฌ๋ณด๊ธฐ"""
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, alignment)
if background is None:
return None
# ๋ฏธ๋ฆฌ๋ณด๊ธฐ ์ด๋ฏธ์ง ์์ฑ
preview = background.copy().convert('RGBA')
# ๋ฐํฌ๋ช
๋นจ๊ฐ์ ์ค๋ฒ๋ ์ด
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64))
# ๋ง์คํฌ ์ ์ฉ
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
red_mask.paste(red_overlay, (0, 0), mask)
# ์ค๋ฒ๋ ์ด ํฉ์ฑ
preview = Image.alpha_composite(preview, red_mask)
return preview
@spaces.GPU(duration=24)
def outpaint_image(image, prompt, width, height, overlap_percentage, alignment, num_steps=8):
"""์ด๋ฏธ์ง ์์ํ์ธํ
์คํ"""
if image is None:
return None
if not OUTPAINT_MODEL_LOADED:
return Image.new('RGB', (width, height), (200, 200, 200))
try:
# ์ด๋ฏธ์ง์ ๋ง์คํฌ ์ค๋น
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, alignment)
if background is None:
return None
# cnet_image ์์ฑ (๋ง์คํฌ ์์ญ์ ๊ฒ์์์ผ๋ก)
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
# ํ๋กฌํํธ ์ค๋น
final_prompt = f"{prompt}, high quality, 4k" if prompt else "high quality, 4k"
# GPU์์ ์คํ
with torch.autocast(device_type="cuda", dtype=torch.float16):
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
# ์์ฑ ํ๋ก์ธ์ค
for generated_image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
num_inference_steps=num_steps
):
# ์ค๊ฐ ๊ฒฐ๊ณผ (ํ์์ ์ฌ์ฉ)
pass
# ์ต์ข
์ด๋ฏธ์ง
final_image = generated_image
# RGBA๋ก ๋ณํํ๊ณ ๋ง์คํฌ ์ ์ฉ
final_image = final_image.convert("RGBA")
cnet_image.paste(final_image, (0, 0), mask)
return cnet_image
except Exception as e:
logging.error(f"Outpainting error: {str(e)}")
return background if 'background' in locals() else None
# MMAudio ๊ด๋ จ ํจ์๋ค
def translate_prompt(text):
try:
if translator is None:
return text
if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text):
with torch.no_grad():
translation = translator(text)[0]['translation_text']
return translation
return text
except Exception as e:
logging.error(f"Translation error: {e}")
return text
@spaces.GPU
@torch.inference_mode()
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
cfg_strength: float, duration: float):
if not MMAUDIO_MODEL_LOADED:
return None
prompt = translate_prompt(prompt)
negative_prompt = translate_prompt(negative_prompt)
rng = torch.Generator(device=device)
rng.manual_seed(seed)
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
clip_frames, sync_frames, duration = load_video(video, duration)
clip_frames = clip_frames.unsqueeze(0)
sync_frames = sync_frames.unsqueeze(0)
seq_cfg.duration = duration
net_mmaudio.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
audios = generate(clip_frames,
sync_frames, [prompt],
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net_mmaudio,
fm=fm,
rng=rng,
cfg_strength=cfg_strength)
audio = audios.float().cpu()[0]
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
make_video(video,
video_save_path,
audio,
sampling_rate=seq_cfg.sampling_rate,
duration_sec=seq_cfg.duration)
return video_save_path
# CSS
css = """
:root {
--primary-color: #f8c3cd;
--secondary-color: #b3e5fc;
--background-color: #f5f5f7;
--card-background: #ffffff;
--text-color: #424242;
--accent-color: #ffb6c1;
--success-color: #c8e6c9;
--warning-color: #fff9c4;
--shadow-color: rgba(0, 0, 0, 0.1);
--border-radius: 12px;
}
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
}
.panel-box {
border-radius: var(--border-radius) !important;
box-shadow: 0 8px 16px var(--shadow-color) !important;
background-color: var(--card-background) !important;
padding: 20px !important;
margin-bottom: 20px !important;
}
#generate-btn, #video-btn, #outpaint-btn, #preview-btn, #audio-btn {
background: linear-gradient(135deg, #ff9a9e, #fad0c4) !important;
font-size: 1.1rem !important;
padding: 12px 24px !important;
margin-top: 10px !important;
width: 100% !important;
}
.tabitem {
min-height: 700px !important;
}
"""
# Gradio Interface
demo = gr.Blocks(css=css, title="AI ์ด๋ฏธ์ง & ๋น๋์ค & ์ค๋์ค ์์ฑ๊ธฐ")
with demo:
gr.Markdown("# ๐จ Ginigen ์คํ๋์ค")
with gr.Tabs() as tabs:
# ์ฒซ ๋ฒ์งธ ํญ: ํ
์คํธ to ์ด๋ฏธ์ง
with gr.Tab("ํ
์คํธโ์ด๋ฏธ์งโ๋น๋์ค", elem_classes="tabitem"):
with gr.Row(equal_height=True):
# ์
๋ ฅ ์ปฌ๋ผ
with gr.Column(scale=1):
with gr.Group(elem_classes="panel-box"):
gr.Markdown("### ๐ ์ด๋ฏธ์ง ์์ฑ ์ค์ ")
prompt = gr.Textbox(
label="ํ๋กฌํํธ(ํ๊ธ/์์ด ๊ฐ๋ฅ)",
placeholder="์์ฑํ๊ณ ์ถ์ ์ด๋ฏธ์ง๋ฅผ ์ค๋ช
ํ์ธ์...",
lines=3
)
size_preset = gr.Dropdown(
choices=list(IMAGE_PRESETS.keys()),
value="1:1 ์ ์ฌ๊ฐํ",
label="ํฌ๊ธฐ ํ๋ฆฌ์
"
)
with gr.Row():
width = gr.Slider(256, 2048, 1024, step=64, label="๋๋น")
height = gr.Slider(256, 2048, 1024, step=64, label="๋์ด")
with gr.Row():
guidance = gr.Slider(1.0, 20.0, 3.5, step=0.1, label="๊ฐ์ด๋์ค")
steps = gr.Slider(1, 50, 30, step=1, label="์คํ
")
seed = gr.Number(label="์๋ (-1=๋๋ค)", value=-1)
generate_btn = gr.Button("๐จ ์ด๋ฏธ์ง ์์ฑ", variant="primary", elem_id="generate-btn")
with gr.Group(elem_classes="panel-box"):
gr.Markdown("### ๐ฌ ๋น๋์ค ์์ฑ ์ค์ ")
video_prompt = gr.Textbox(
label="(์ ํ) ๋น๋์ค ํ๋กฌํํธ(์์ด๋ก ์
๋ ฅ)",
placeholder="๋น๋์ค์ ์์ง์์ ์ค๋ช
ํ์ธ์... (๋น์๋๋ฉด ๊ธฐ๋ณธ ์์ง์ ์ ์ฉ)",
lines=2
)
video_length = gr.Slider(
minimum=1,
maximum=60,
value=4,
step=0.5,
label="๋น๋์ค ๊ธธ์ด (์ด)",
info="1์ด์์ 60์ด๊น์ง ์ ํ ๊ฐ๋ฅํฉ๋๋ค"
)
video_btn = gr.Button("๐ฌ ๋น๋์ค๋ก ๋ณํ", variant="secondary", elem_id="video-btn")
# ์ถ๋ ฅ ์ปฌ๋ผ
with gr.Column(scale=1):
with gr.Group(elem_classes="panel-box"):
gr.Markdown("### ๐ผ๏ธ ์์ฑ ๊ฒฐ๊ณผ")
output_image = gr.Image(label="์์ฑ๋ ์ด๋ฏธ์ง", type="numpy")
output_seed = gr.Textbox(label="์๋ ์ ๋ณด")
output_video = gr.Video(label="์์ฑ๋ ๋น๋์ค")
# ๋ ๋ฒ์งธ ํญ: ์ด๋ฏธ์ง ์์ํ์ธํ
with gr.Tab("์ด๋ฏธ์ง ๋น์จ ๋ณ๊ฒฝ/์์ฑ", elem_classes="tabitem"):
with gr.Row(equal_height=True):
# ์
๋ ฅ ์ปฌ๋ผ
with gr.Column(scale=1):
with gr.Group(elem_classes="panel-box"):
gr.Markdown("### ๐ผ๏ธ ์ด๋ฏธ์ง ์
๋ก๋")
input_image = gr.Image(
label="์๋ณธ ์ด๋ฏธ์ง",
type="numpy"
)
outpaint_prompt = gr.Textbox(
label="ํ๋กฌํํธ (์ ํ)",
placeholder="ํ์ฅํ ์์ญ์ ๋ํ ์ค๋ช
...",
lines=2
)
with gr.Group(elem_classes="panel-box"):
gr.Markdown("### โ๏ธ ์์ํ์ธํ
์ค์ ")
outpaint_size_preset = gr.Dropdown(
choices=list(IMAGE_PRESETS.keys()),
value="16:9 ์์ด๋์คํฌ๋ฆฐ",
label="๋ชฉํ ํฌ๊ธฐ ํ๋ฆฌ์
"
)
with gr.Row():
outpaint_width = gr.Slider(256, 2048, 1280, step=64, label="๋ชฉํ ๋๋น")
outpaint_height = gr.Slider(256, 2048, 720, step=64, label="๋ชฉํ ๋์ด")
alignment = gr.Dropdown(
choices=["๊ฐ์ด๋ฐ", "์ผ์ชฝ", "์ค๋ฅธ์ชฝ", "์", "์๋"],
value="๊ฐ์ด๋ฐ",
label="์ ๋ ฌ"
)
overlap_percentage = gr.Slider(
minimum=1,
maximum=50,
value=10,
step=1,
label="๋ง์คํฌ ์ค๋ฒ๋ฉ (%)"
)
outpaint_steps = gr.Slider(
minimum=4,
maximum=12,
value=8,
step=1,
label="์ถ๋ก ์คํ
"
)
preview_btn = gr.Button("๐๏ธ ๋ฏธ๋ฆฌ๋ณด๊ธฐ", elem_id="preview-btn")
outpaint_btn = gr.Button("๐จ ์์ํ์ธํ
์คํ", variant="primary", elem_id="outpaint-btn")
# ์ถ๋ ฅ ์ปฌ๋ผ
with gr.Column(scale=1):
with gr.Group(elem_classes="panel-box"):
gr.Markdown("### ๐ผ๏ธ ๊ฒฐ๊ณผ")
preview_image = gr.Image(label="๋ฏธ๋ฆฌ๋ณด๊ธฐ")
outpaint_result = gr.Image(label="์์ํ์ธํ
๊ฒฐ๊ณผ")
# ์ธ ๋ฒ์งธ ํญ: ๋น๋์ค + ์ค๋์ค
with gr.Tab("๋น๋์ค + ์ค๋์ค", elem_classes="tabitem"):
with gr.Row(equal_height=True):
# ์
๋ ฅ ์ปฌ๋ผ
with gr.Column(scale=1):
with gr.Group(elem_classes="panel-box"):
gr.Markdown("### ๐ฅ ๋น๋์ค ์
๋ก๋")
audio_video_input = gr.Video(
label="์
๋ ฅ ๋น๋์ค",
sources=["upload"]
)
with gr.Group(elem_classes="panel-box"):
gr.Markdown("### ๐ต ์ค๋์ค ์์ฑ ์ค์ ")
audio_prompt = gr.Textbox(
label="ํ๋กฌํํธ (ํ๊ธ ์ง์)" if MMAUDIO_MODEL_LOADED and translator else "ํ๋กฌํํธ",
placeholder="์์ฑํ๊ณ ์ถ์ ์ค๋์ค๋ฅผ ์ค๋ช
ํ์ธ์... (์: ํํ๋ก์ด ํผ์๋
ธ ์์
)",
lines=3
)
audio_negative_prompt = gr.Textbox(
label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ",
value="music",
placeholder="์ํ์ง ์๋ ์์...",
lines=2
)
with gr.Row():
audio_seed = gr.Number(label="์๋", value=0)
audio_steps = gr.Number(label="์คํ
", value=25)
with gr.Row():
audio_cfg = gr.Number(label="๊ฐ์ด๋์ค ์ค์ผ์ผ", value=4.5)
audio_duration = gr.Number(label="์ง์์๊ฐ (์ด)", value=9999)
audio_btn = gr.Button("๐ต ์ค๋์ค ์์ฑ ๋ฐ ํฉ์ฑ", variant="primary", elem_id="audio-btn")
# ์ถ๋ ฅ ์ปฌ๋ผ
with gr.Column(scale=1):
with gr.Group(elem_classes="panel-box"):
gr.Markdown("### ๐ฌ ์์ฑ ๊ฒฐ๊ณผ")
output_video_with_audio = gr.Video(
label="์ค๋์ค๊ฐ ์ถ๊ฐ๋ ๋น๋์ค",
interactive=False
)
if not MMAUDIO_MODEL_LOADED:
gr.Markdown("โ ๏ธ MMAudio ๋ชจ๋ธ์ ๋ก๋ํ์ง ๋ชปํ์ต๋๋ค. ์ด ๊ธฐ๋ฅ์ ์ฌ์ฉํ ์ ์์ต๋๋ค.")
# ์ด๋ฒคํธ ์ฐ๊ฒฐ - ์ฒซ ๋ฒ์งธ ํญ
size_preset.change(update_dimensions, [size_preset], [width, height])
generate_btn.click(
generate_text_to_image,
[prompt, width, height, guidance, steps, seed],
[output_image, output_seed]
)
video_btn.click(
lambda img, v_prompt, length: generate_video_from_image(img, v_prompt, length) if img is not None else None,
[output_image, video_prompt, video_length],
[output_video]
)
# ์ด๋ฒคํธ ์ฐ๊ฒฐ - ๋ ๋ฒ์งธ ํญ
outpaint_size_preset.change(update_dimensions, [outpaint_size_preset], [outpaint_width, outpaint_height])
preview_btn.click(
preview_outpaint,
[input_image, outpaint_width, outpaint_height, overlap_percentage, alignment],
[preview_image]
)
outpaint_btn.click(
outpaint_image,
[input_image, outpaint_prompt, outpaint_width, outpaint_height, overlap_percentage, alignment, outpaint_steps],
[outpaint_result]
)
# ์ด๋ฒคํธ ์ฐ๊ฒฐ - ์ธ ๋ฒ์งธ ํญ
audio_btn.click(
video_to_audio,
[audio_video_input, audio_prompt, audio_negative_prompt, audio_seed, audio_steps, audio_cfg, audio_duration],
[output_video_with_audio]
)
demo.launch() |