|
import spaces |
|
import logging |
|
from datetime import datetime |
|
from pathlib import Path |
|
import gradio as gr |
|
import torch |
|
import torchaudio |
|
import os |
|
from transformers import pipeline |
|
from pixabay import Image, Video |
|
import tempfile |
|
|
|
|
|
try: |
|
import mmaudio |
|
except ImportError: |
|
os.system("pip install -e .") |
|
import mmaudio |
|
|
|
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, |
|
setup_eval_logging) |
|
from mmaudio.model.flow_matching import FlowMatching |
|
from mmaudio.model.networks import MMAudio, get_my_mmaudio |
|
from mmaudio.model.sequence_config import SequenceConfig |
|
from mmaudio.model.utils.features_utils import FeaturesUtils |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
|
|
log = logging.getLogger() |
|
|
|
|
|
device = 'cuda' |
|
dtype = torch.bfloat16 |
|
|
|
|
|
model: ModelConfig = all_model_cfg['large_44k_v2'] |
|
model.download_if_needed() |
|
output_dir = Path('./output/gradio') |
|
|
|
setup_eval_logging() |
|
|
|
|
|
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") |
|
|
|
|
|
|
|
import requests |
|
|
|
def search_pixabay_videos(query, api_key): |
|
base_url = "https://pixabay.com/api/videos/" |
|
params = { |
|
"key": api_key, |
|
"q": query, |
|
"per_page": 80 |
|
} |
|
|
|
response = requests.get(base_url, params=params) |
|
if response.status_code == 200: |
|
data = response.json() |
|
return [video['videos']['large']['url'] for video in data.get('hits', [])] |
|
return [] |
|
|
|
|
|
PIXABAY_API_KEY = "33492762-a28a596ec4f286f84cd328b17" |
|
|
|
def search_videos(query): |
|
query = translate_prompt(query) |
|
return search_pixabay_videos(query, PIXABAY_API_KEY) |
|
|
|
|
|
|
|
|
|
custom_css = """ |
|
.gradio-container { |
|
background: linear-gradient(45deg, #1a1a1a, #2a2a2a); |
|
border-radius: 15px; |
|
box-shadow: 0 8px 32px rgba(0,0,0,0.3); |
|
} |
|
|
|
.input-container, .output-container { |
|
background: rgba(255,255,255,0.1); |
|
backdrop-filter: blur(10px); |
|
border-radius: 10px; |
|
padding: 20px; |
|
transform-style: preserve-3d; |
|
transition: transform 0.3s ease; |
|
} |
|
|
|
.input-container:hover { |
|
transform: translateZ(20px); |
|
} |
|
|
|
.gallery-item { |
|
transition: transform 0.3s ease; |
|
border-radius: 8px; |
|
overflow: hidden; |
|
} |
|
|
|
.gallery-item:hover { |
|
transform: scale(1.05); |
|
box-shadow: 0 4px 15px rgba(0,0,0,0.2); |
|
} |
|
|
|
.tabs { |
|
background: rgba(255,255,255,0.05); |
|
border-radius: 10px; |
|
padding: 10px; |
|
} |
|
|
|
button { |
|
background: linear-gradient(45deg, #4a90e2, #357abd); |
|
border: none; |
|
border-radius: 5px; |
|
transition: all 0.3s ease; |
|
} |
|
|
|
button:hover { |
|
transform: translateY(-2px); |
|
box-shadow: 0 4px 15px rgba(74,144,226,0.3); |
|
} |
|
""" |
|
|
|
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]: |
|
seq_cfg = model.seq_cfg |
|
|
|
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() |
|
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) |
|
log.info(f'Loaded weights from {model.model_path}') |
|
|
|
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, |
|
synchformer_ckpt=model.synchformer_ckpt, |
|
enable_conditions=True, |
|
mode=model.mode, |
|
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, |
|
need_vae_encoder=False) |
|
feature_utils = feature_utils.to(device, dtype).eval() |
|
|
|
return net, feature_utils, seq_cfg |
|
|
|
net, feature_utils, seq_cfg = get_model() |
|
|
|
def translate_prompt(text): |
|
if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text): |
|
translation = translator(text)[0]['translation_text'] |
|
return translation |
|
return text |
|
|
|
def search_videos(query): |
|
query = translate_prompt(query) |
|
videos = pixabay_video.search(q=query, per_page=80) |
|
return [video.video_large for video in videos['hits']] |
|
|
|
@spaces.GPU |
|
@torch.inference_mode() |
|
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int, |
|
cfg_strength: float, duration: float): |
|
prompt = translate_prompt(prompt) |
|
negative_prompt = translate_prompt(negative_prompt) |
|
|
|
rng = torch.Generator(device=device) |
|
rng.manual_seed(seed) |
|
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) |
|
|
|
clip_frames, sync_frames, duration = load_video(video, duration) |
|
clip_frames = clip_frames.unsqueeze(0) |
|
sync_frames = sync_frames.unsqueeze(0) |
|
seq_cfg.duration = duration |
|
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) |
|
|
|
audios = generate(clip_frames, |
|
sync_frames, [prompt], |
|
negative_text=[negative_prompt], |
|
feature_utils=feature_utils, |
|
net=net, |
|
fm=fm, |
|
rng=rng, |
|
cfg_strength=cfg_strength) |
|
audio = audios.float().cpu()[0] |
|
|
|
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name |
|
make_video(video, |
|
video_save_path, |
|
audio, |
|
sampling_rate=seq_cfg.sampling_rate, |
|
duration_sec=seq_cfg.duration) |
|
return video_save_path |
|
|
|
@spaces.GPU |
|
@torch.inference_mode() |
|
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float, |
|
duration: float): |
|
prompt = translate_prompt(prompt) |
|
negative_prompt = translate_prompt(negative_prompt) |
|
|
|
rng = torch.Generator(device=device) |
|
rng.manual_seed(seed) |
|
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) |
|
|
|
clip_frames = sync_frames = None |
|
seq_cfg.duration = duration |
|
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) |
|
|
|
audios = generate(clip_frames, |
|
sync_frames, [prompt], |
|
negative_text=[negative_prompt], |
|
feature_utils=feature_utils, |
|
net=net, |
|
fm=fm, |
|
rng=rng, |
|
cfg_strength=cfg_strength) |
|
audio = audios.float().cpu()[0] |
|
|
|
audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name |
|
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate) |
|
return audio_save_path |
|
|
|
|
|
video_search_tab = gr.Interface( |
|
fn=search_videos, |
|
inputs=gr.Textbox(label="๊ฒ์์ด ์
๋ ฅ"), |
|
outputs=gr.Gallery(label="๊ฒ์ ๊ฒฐ๊ณผ", columns=4, rows=20), |
|
css=custom_css |
|
) |
|
|
|
video_to_audio_tab = gr.Interface( |
|
fn=video_to_audio, |
|
inputs=[ |
|
gr.Video(label="๋น๋์ค"), |
|
gr.Textbox(label="ํ๋กฌํํธ"), |
|
gr.Textbox(label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ", value="music"), |
|
gr.Number(label="์๋", value=0), |
|
gr.Number(label="์คํ
์", value=25), |
|
gr.Number(label="๊ฐ์ด๋ ๊ฐ๋", value=4.5), |
|
gr.Number(label="๊ธธ์ด(์ด)", value=8), |
|
], |
|
outputs="playable_video", |
|
css=custom_css |
|
) |
|
|
|
text_to_audio_tab = gr.Interface( |
|
fn=text_to_audio, |
|
inputs=[ |
|
gr.Textbox(label="ํ๋กฌํํธ"), |
|
gr.Textbox(label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ"), |
|
gr.Number(label="์๋", value=0), |
|
gr.Number(label="์คํ
์", value=25), |
|
gr.Number(label="๊ฐ์ด๋ ๊ฐ๋", value=4.5), |
|
gr.Number(label="๊ธธ์ด(์ด)", value=8), |
|
], |
|
outputs="audio", |
|
css=custom_css |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
gr.TabbedInterface( |
|
[video_search_tab, video_to_audio_tab, text_to_audio_tab], |
|
["๋น๋์ค ๊ฒ์", "๋น๋์ค-์ค๋์ค ๋ณํ", "ํ
์คํธ-์ค๋์ค ๋ณํ"], |
|
css=custom_css |
|
).launch(allowed_paths=[output_dir]) |