Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image, ImageDraw
|
4 |
from gradio_client import Client, handle_file
|
5 |
import random
|
6 |
import tempfile
|
7 |
-
import os
|
8 |
import logging
|
9 |
import torch
|
10 |
from diffusers import AutoencoderKL, TCDScheduler
|
@@ -26,21 +41,6 @@ from concurrent.futures import ThreadPoolExecutor
|
|
26 |
# 환경 변수 설정으로 torch.load 체크 우회 (임시 해결책)
|
27 |
os.environ["TRANSFORMERS_ALLOW_UNSAFE_DESERIALIZATION"] = "1"
|
28 |
|
29 |
-
# Spaces GPU
|
30 |
-
import os
|
31 |
-
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
32 |
-
|
33 |
-
if IS_SPACES:
|
34 |
-
import spaces
|
35 |
-
else:
|
36 |
-
# GPU 데코레이터가 없을 때를 위한 더미 데코레이터
|
37 |
-
class spaces:
|
38 |
-
@staticmethod
|
39 |
-
def GPU(duration=None):
|
40 |
-
def decorator(func):
|
41 |
-
return func
|
42 |
-
return decorator
|
43 |
-
|
44 |
# GPU 초기화를 위한 간단한 함수 (Spaces 환경에서 필수)
|
45 |
@spaces.GPU(duration=1)
|
46 |
def gpu_warmup():
|
@@ -50,7 +50,7 @@ def gpu_warmup():
|
|
50 |
del dummy
|
51 |
return "GPU ready"
|
52 |
|
53 |
-
# MMAudio imports
|
54 |
try:
|
55 |
import mmaudio
|
56 |
except ImportError:
|
@@ -64,6 +64,9 @@ from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
|
64 |
from mmaudio.model.sequence_config import SequenceConfig
|
65 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
66 |
|
|
|
|
|
|
|
67 |
# 기존 코드의 모든 설정과 초기화 부분 유지
|
68 |
torch.set_float32_matmul_precision("medium")
|
69 |
|
@@ -77,130 +80,21 @@ else:
|
|
77 |
|
78 |
logging.info(f"Using device: {device}")
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
transforms.ToTensor(),
|
90 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
91 |
-
])
|
92 |
-
|
93 |
-
BIREFNET_MODEL_LOADED = True
|
94 |
-
except Exception as e:
|
95 |
-
logging.error(f"Failed to load BiRefNet models: {str(e)}")
|
96 |
-
BIREFNET_MODEL_LOADED = False
|
97 |
-
|
98 |
-
# ControlNet 모델 로드 (기존 코드)
|
99 |
-
try:
|
100 |
-
from controlnet_union import ControlNetModel_Union
|
101 |
-
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
102 |
-
|
103 |
-
# ControlNet 설정 및 로드
|
104 |
-
config_file = hf_hub_download(
|
105 |
-
"xinsir/controlnet-union-sdxl-1.0",
|
106 |
-
filename="config_promax.json",
|
107 |
-
)
|
108 |
-
|
109 |
-
config = ControlNetModel_Union.load_config(config_file)
|
110 |
-
controlnet_model = ControlNetModel_Union.from_config(config)
|
111 |
-
|
112 |
-
model_file = hf_hub_download(
|
113 |
-
"xinsir/controlnet-union-sdxl-1.0",
|
114 |
-
filename="diffusion_pytorch_model_promax.safetensors",
|
115 |
-
)
|
116 |
-
state_dict = load_state_dict(model_file)
|
117 |
-
loaded_keys = list(state_dict.keys())
|
118 |
-
|
119 |
-
result = ControlNetModel_Union._load_pretrained_model(
|
120 |
-
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0", loaded_keys
|
121 |
-
)
|
122 |
-
|
123 |
-
model = result[0]
|
124 |
-
model = model.to(device=device, dtype=torch.float16 if device.type == "cuda" else torch.float32)
|
125 |
-
|
126 |
-
# VAE 로드
|
127 |
-
vae = AutoencoderKL.from_pretrained(
|
128 |
-
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 if device.type == "cuda" else torch.float32
|
129 |
-
).to(device)
|
130 |
-
|
131 |
-
# 파이프라인 로드
|
132 |
-
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
133 |
-
"SG161222/RealVisXL_V5.0_Lightning",
|
134 |
-
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
135 |
-
vae=vae,
|
136 |
-
controlnet=model,
|
137 |
-
variant="fp16" if device.type == "cuda" else None,
|
138 |
-
).to(device)
|
139 |
-
|
140 |
-
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
141 |
-
|
142 |
-
OUTPAINT_MODEL_LOADED = True
|
143 |
-
except Exception as e:
|
144 |
-
logging.error(f"Failed to load outpainting models: {str(e)}")
|
145 |
-
OUTPAINT_MODEL_LOADED = False
|
146 |
-
|
147 |
-
# MMAudio 모델 설정 (기존 코드)
|
148 |
-
if torch.cuda.is_available():
|
149 |
-
mmaudio_dtype = torch.bfloat16
|
150 |
-
else:
|
151 |
-
mmaudio_dtype = torch.float32
|
152 |
-
|
153 |
-
# MMAudio 모델 초기화 (기존 코드)
|
154 |
-
try:
|
155 |
-
model_mmaudio: ModelConfig = all_model_cfg['large_44k_v2']
|
156 |
-
model_mmaudio.download_if_needed()
|
157 |
-
output_dir = Path('./output/gradio')
|
158 |
-
setup_eval_logging()
|
159 |
-
|
160 |
-
# 번역기 설정
|
161 |
-
try:
|
162 |
-
translator = pipeline("translation",
|
163 |
-
model="Helsinki-NLP/opus-mt-ko-en",
|
164 |
-
device="cpu",
|
165 |
-
use_fast=True,
|
166 |
-
trust_remote_code=False)
|
167 |
-
except Exception as e:
|
168 |
-
logging.warning(f"Failed to load translation model: {e}")
|
169 |
-
translator = None
|
170 |
-
|
171 |
-
def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
172 |
-
with torch.cuda.device(device):
|
173 |
-
seq_cfg = model_mmaudio.seq_cfg
|
174 |
-
net: MMAudio = get_my_mmaudio(model_mmaudio.model_name).to(device, mmaudio_dtype).eval()
|
175 |
-
net.load_weights(torch.load(model_mmaudio.model_path, map_location=device, weights_only=True))
|
176 |
-
logging.info(f'Loaded weights from {model_mmaudio.model_path}')
|
177 |
-
|
178 |
-
feature_utils = FeaturesUtils(
|
179 |
-
tod_vae_ckpt=model_mmaudio.vae_path,
|
180 |
-
synchformer_ckpt=model_mmaudio.synchformer_ckpt,
|
181 |
-
enable_conditions=True,
|
182 |
-
mode=model_mmaudio.mode,
|
183 |
-
bigvgan_vocoder_ckpt=model_mmaudio.bigvgan_16k_path,
|
184 |
-
need_vae_encoder=False
|
185 |
-
).to(device, mmaudio_dtype).eval()
|
186 |
-
|
187 |
-
return net, feature_utils, seq_cfg
|
188 |
-
|
189 |
-
net_mmaudio, feature_utils, seq_cfg = get_mmaudio_model()
|
190 |
-
MMAUDIO_MODEL_LOADED = True
|
191 |
-
except Exception as e:
|
192 |
-
logging.error(f"Failed to load MMAudio models: {str(e)}")
|
193 |
-
MMAUDIO_MODEL_LOADED = False
|
194 |
-
translator = None
|
195 |
|
196 |
# API URLs
|
197 |
TEXT2IMG_API_URL = "http://211.233.58.201:7896"
|
198 |
VIDEO_API_URL = "http://211.233.58.201:7875"
|
199 |
|
200 |
-
#
|
201 |
-
logging.basicConfig(level=logging.INFO)
|
202 |
-
|
203 |
-
# Image size presets (기존 코드)
|
204 |
IMAGE_PRESETS = {
|
205 |
"커스텀": {"width": 1024, "height": 1024},
|
206 |
"1:1 정사각형": {"width": 1024, "height": 1024},
|
@@ -217,6 +111,119 @@ IMAGE_PRESETS = {
|
|
217 |
"LinkedIn 배너": {"width": 1584, "height": 396},
|
218 |
}
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
# 기존 함수들 모두 유지
|
221 |
def update_dimensions(preset):
|
222 |
if preset in IMAGE_PRESETS:
|
@@ -332,9 +339,7 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, alignment):
|
|
332 |
mask = Image.new('L', target_size, 255)
|
333 |
mask_draw = ImageDraw.Draw(mask)
|
334 |
|
335 |
-
# 마스크 영역 그리기
|
336 |
-
white_gaps_patch = 2
|
337 |
-
|
338 |
left_overlap = margin_x + overlap_x if alignment != "왼쪽" else margin_x
|
339 |
right_overlap = margin_x + new_width - overlap_x if alignment != "오른쪽" else margin_x + new_width
|
340 |
top_overlap = margin_y + overlap_y if alignment != "위" else margin_y
|
@@ -374,7 +379,11 @@ def outpaint_image(image, prompt, width, height, overlap_percentage, alignment,
|
|
374 |
if image is None:
|
375 |
return None
|
376 |
|
377 |
-
|
|
|
|
|
|
|
|
|
378 |
return Image.new('RGB', (width, height), (200, 200, 200))
|
379 |
|
380 |
try:
|
@@ -391,16 +400,16 @@ def outpaint_image(image, prompt, width, height, overlap_percentage, alignment,
|
|
391 |
final_prompt = f"{prompt}, high quality, 4k" if prompt else "high quality, 4k"
|
392 |
|
393 |
# GPU에서 실행
|
394 |
-
with torch.autocast(device_type=device.type, dtype=
|
395 |
(
|
396 |
prompt_embeds,
|
397 |
negative_prompt_embeds,
|
398 |
pooled_prompt_embeds,
|
399 |
negative_pooled_prompt_embeds,
|
400 |
-
) =
|
401 |
|
402 |
# 생성 프로세스
|
403 |
-
for generated_image in
|
404 |
prompt_embeds=prompt_embeds,
|
405 |
negative_prompt_embeds=negative_prompt_embeds,
|
406 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
@@ -427,12 +436,12 @@ def outpaint_image(image, prompt, width, height, overlap_percentage, alignment,
|
|
427 |
# MMAudio 관련 함수들
|
428 |
def translate_prompt(text):
|
429 |
try:
|
430 |
-
if
|
431 |
return text
|
432 |
|
433 |
if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text):
|
434 |
with torch.no_grad():
|
435 |
-
translation =
|
436 |
return translation
|
437 |
return text
|
438 |
except Exception as e:
|
@@ -443,7 +452,11 @@ def translate_prompt(text):
|
|
443 |
@torch.inference_mode()
|
444 |
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
445 |
cfg_strength: float, duration: float):
|
446 |
-
|
|
|
|
|
|
|
|
|
447 |
return None
|
448 |
|
449 |
prompt = translate_prompt(prompt)
|
@@ -456,14 +469,14 @@ def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int
|
|
456 |
clip_frames, sync_frames, duration = load_video(video, duration)
|
457 |
clip_frames = clip_frames.unsqueeze(0)
|
458 |
sync_frames = sync_frames.unsqueeze(0)
|
459 |
-
|
460 |
-
|
461 |
|
462 |
audios = generate(clip_frames,
|
463 |
sync_frames, [prompt],
|
464 |
negative_text=[negative_prompt],
|
465 |
-
feature_utils=
|
466 |
-
net=
|
467 |
fm=fm,
|
468 |
rng=rng,
|
469 |
cfg_strength=cfg_strength)
|
@@ -473,19 +486,19 @@ def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int
|
|
473 |
make_video(video,
|
474 |
video_save_path,
|
475 |
audio,
|
476 |
-
sampling_rate=
|
477 |
-
duration_sec=
|
478 |
return video_save_path
|
479 |
|
480 |
# 비디오 배경제거 관련 함수들
|
481 |
def process_bg_image(image, bg, fast_mode=False):
|
482 |
"""단일 이미지 배경 처리"""
|
483 |
-
if
|
484 |
return image
|
485 |
|
486 |
image_size = image.size
|
487 |
input_images = transform_image(image).unsqueeze(0).to(device)
|
488 |
-
model =
|
489 |
|
490 |
with torch.no_grad():
|
491 |
preds = model(input_images)[-1].sigmoid().cpu()
|
@@ -528,7 +541,11 @@ def process_video_frame(frame, bg_type, bg, fast_mode, bg_frame_index, backgroun
|
|
528 |
def process_video_bg(vid, bg_type="색상", bg_image=None, bg_video=None, color="#00FF00",
|
529 |
fps=0, video_handling="slow_down", fast_mode=True, max_workers=10):
|
530 |
"""비디오 배경 처리 메인 함수"""
|
531 |
-
|
|
|
|
|
|
|
|
|
532 |
yield gr.update(visible=False), gr.update(visible=True), "BiRefNet 모델을 로드하지 못했습니다."
|
533 |
yield None, None, "BiRefNet 모델을 로드하지 못했습니다."
|
534 |
return
|
@@ -697,18 +714,6 @@ def merge_videos_with_audio(video_files, audio_file, audio_volume, output_fps):
|
|
697 |
logging.error(f"Video merge error: {str(e)}")
|
698 |
return None, f"❌ 오류 발생: {str(e)}"
|
699 |
|
700 |
-
# GPU 초기화 함수 추가
|
701 |
-
def dummy_gpu_init():
|
702 |
-
"""GPU 초기화를 위한 더미 함수"""
|
703 |
-
if torch.cuda.is_available():
|
704 |
-
try:
|
705 |
-
# 간단한 텐서 연산으로 GPU 초기화
|
706 |
-
dummy_tensor = torch.zeros(1).to(device)
|
707 |
-
del dummy_tensor
|
708 |
-
logging.info("GPU initialized successfully")
|
709 |
-
except Exception as e:
|
710 |
-
logging.warning(f"GPU initialization warning: {e}")
|
711 |
-
|
712 |
# CSS
|
713 |
css = """
|
714 |
:root {
|
@@ -751,6 +756,10 @@ demo = gr.Blocks(css=css, title="AI 이미지 & 비디오 & 오디오 생성기"
|
|
751 |
|
752 |
with demo:
|
753 |
gr.Markdown("# 🎨 Ginigen 스튜디오")
|
|
|
|
|
|
|
|
|
754 |
|
755 |
with gr.Tabs() as tabs:
|
756 |
# 첫 번째 탭: 텍스트 to 이미지
|
@@ -896,7 +905,7 @@ with demo:
|
|
896 |
gr.Markdown("### 🎵 오디오 생성 설정")
|
897 |
|
898 |
audio_prompt = gr.Textbox(
|
899 |
-
label="프롬프트 (한글 지원)"
|
900 |
placeholder="생성하고 싶은 오디오를 설명하세요... (예: 평화로운 피아노 음악)",
|
901 |
lines=3
|
902 |
)
|
@@ -927,9 +936,6 @@ with demo:
|
|
927 |
label="오디오가 추가된 비디오",
|
928 |
interactive=False
|
929 |
)
|
930 |
-
|
931 |
-
if not MMAUDIO_MODEL_LOADED:
|
932 |
-
gr.Markdown("⚠️ MMAudio 모델을 로드하지 못했습니다. 이 기능은 사용할 수 없습니다.")
|
933 |
|
934 |
# 네 번째 탭: 비디오 편집
|
935 |
with gr.Tab("비디오 편집", elem_classes="tabitem"):
|
@@ -1077,9 +1083,6 @@ with demo:
|
|
1077 |
)
|
1078 |
|
1079 |
bg_remove_btn = gr.Button("🎬 배경 변경", variant="primary", elem_id="bg-remove-btn")
|
1080 |
-
|
1081 |
-
if not BIREFNET_MODEL_LOADED:
|
1082 |
-
gr.Markdown("⚠️ BiRefNet 모델을 로드하지 못했습니다. 이 기능은 사용할 수 없습니다.")
|
1083 |
|
1084 |
# 출력 컬럼
|
1085 |
with gr.Column(scale=1):
|
@@ -1100,6 +1103,17 @@ with demo:
|
|
1100 |
긴 비디오는 작은 조각으로 나누어 처리하세요.
|
1101 |
""")
|
1102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1103 |
# 이벤트 연결 - 첫 번째 탭
|
1104 |
size_preset.change(update_dimensions, [size_preset], [width, height])
|
1105 |
|
@@ -1167,20 +1181,12 @@ with demo:
|
|
1167 |
fps_slider, video_handling_radio, fast_mode_checkbox, max_workers_slider],
|
1168 |
outputs=[stream_image, output_bg_video, time_textbox]
|
1169 |
)
|
1170 |
-
|
1171 |
-
#
|
1172 |
-
|
1173 |
-
if IS_SPACES and torch.cuda.is_available():
|
1174 |
-
# Spaces 환경에서 GPU 워밍업 실행
|
1175 |
-
gpu_warmup()
|
1176 |
-
logging.info("GPU warmed up successfully")
|
1177 |
-
elif torch.cuda.is_available():
|
1178 |
-
dummy_gpu_init()
|
1179 |
-
except Exception as e:
|
1180 |
-
logging.warning(f"GPU initialization warning: {e}")
|
1181 |
|
1182 |
if __name__ == "__main__":
|
1183 |
-
# Spaces 환경에서 추가
|
1184 |
if IS_SPACES:
|
1185 |
try:
|
1186 |
gpu_warmup()
|
|
|
1 |
+
# Spaces GPU - 반드시 첫 번째로 import해야 함!
|
2 |
+
import os
|
3 |
+
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
4 |
+
|
5 |
+
if IS_SPACES:
|
6 |
+
import spaces
|
7 |
+
else:
|
8 |
+
# GPU 데코레이터가 없을 때를 위한 더미 데코레이터
|
9 |
+
class spaces:
|
10 |
+
@staticmethod
|
11 |
+
def GPU(duration=None):
|
12 |
+
def decorator(func):
|
13 |
+
return func
|
14 |
+
return decorator
|
15 |
+
|
16 |
+
# 이제 다른 라이브러리들을 import
|
17 |
import gradio as gr
|
18 |
import numpy as np
|
19 |
from PIL import Image, ImageDraw
|
20 |
from gradio_client import Client, handle_file
|
21 |
import random
|
22 |
import tempfile
|
|
|
23 |
import logging
|
24 |
import torch
|
25 |
from diffusers import AutoencoderKL, TCDScheduler
|
|
|
41 |
# 환경 변수 설정으로 torch.load 체크 우회 (임시 해결책)
|
42 |
os.environ["TRANSFORMERS_ALLOW_UNSAFE_DESERIALIZATION"] = "1"
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# GPU 초기화를 위한 간단한 함수 (Spaces 환경에서 필수)
|
45 |
@spaces.GPU(duration=1)
|
46 |
def gpu_warmup():
|
|
|
50 |
del dummy
|
51 |
return "GPU ready"
|
52 |
|
53 |
+
# MMAudio imports - spaces import 이후에 와야 함
|
54 |
try:
|
55 |
import mmaudio
|
56 |
except ImportError:
|
|
|
64 |
from mmaudio.model.sequence_config import SequenceConfig
|
65 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
66 |
|
67 |
+
# 로깅 설정
|
68 |
+
logging.basicConfig(level=logging.INFO)
|
69 |
+
|
70 |
# 기존 코드의 모든 설정과 초기화 부분 유지
|
71 |
torch.set_float32_matmul_precision("medium")
|
72 |
|
|
|
80 |
|
81 |
logging.info(f"Using device: {device}")
|
82 |
|
83 |
+
# 전역 변수로 모델 상태 관리
|
84 |
+
MODELS_LOADED = False
|
85 |
+
BIREFNET_MODEL = None
|
86 |
+
BIREFNET_LITE_MODEL = None
|
87 |
+
OUTPAINT_PIPE = None
|
88 |
+
MMAUDIO_NET = None
|
89 |
+
MMAUDIO_FEATURE_UTILS = None
|
90 |
+
MMAUDIO_SEQ_CFG = None
|
91 |
+
TRANSLATOR = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# API URLs
|
94 |
TEXT2IMG_API_URL = "http://211.233.58.201:7896"
|
95 |
VIDEO_API_URL = "http://211.233.58.201:7875"
|
96 |
|
97 |
+
# Image size presets
|
|
|
|
|
|
|
98 |
IMAGE_PRESETS = {
|
99 |
"커스텀": {"width": 1024, "height": 1024},
|
100 |
"1:1 정사각형": {"width": 1024, "height": 1024},
|
|
|
111 |
"LinkedIn 배너": {"width": 1584, "height": 396},
|
112 |
}
|
113 |
|
114 |
+
# Transform for BiRefNet
|
115 |
+
transform_image = transforms.Compose([
|
116 |
+
transforms.Resize((768, 768)),
|
117 |
+
transforms.ToTensor(),
|
118 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
119 |
+
])
|
120 |
+
|
121 |
+
@spaces.GPU(duration=60)
|
122 |
+
def load_models():
|
123 |
+
"""모든 모델을 로드하는 함수"""
|
124 |
+
global MODELS_LOADED, BIREFNET_MODEL, BIREFNET_LITE_MODEL, OUTPAINT_PIPE
|
125 |
+
global MMAUDIO_NET, MMAUDIO_FEATURE_UTILS, MMAUDIO_SEQ_CFG, TRANSLATOR
|
126 |
+
|
127 |
+
if MODELS_LOADED:
|
128 |
+
return True
|
129 |
+
|
130 |
+
try:
|
131 |
+
# BiRefNet 모델 로드
|
132 |
+
logging.info("Loading BiRefNet models...")
|
133 |
+
BIREFNET_MODEL = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True)
|
134 |
+
BIREFNET_MODEL.to(device)
|
135 |
+
BIREFNET_LITE_MODEL = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet_lite", trust_remote_code=True)
|
136 |
+
BIREFNET_LITE_MODEL.to(device)
|
137 |
+
|
138 |
+
# ControlNet 및 Outpainting 모델 로드
|
139 |
+
logging.info("Loading ControlNet models...")
|
140 |
+
from controlnet_union import ControlNetModel_Union
|
141 |
+
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
142 |
+
|
143 |
+
config_file = hf_hub_download(
|
144 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
145 |
+
filename="config_promax.json",
|
146 |
+
)
|
147 |
+
|
148 |
+
config = ControlNetModel_Union.load_config(config_file)
|
149 |
+
controlnet_model = ControlNetModel_Union.from_config(config)
|
150 |
+
|
151 |
+
model_file = hf_hub_download(
|
152 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
153 |
+
filename="diffusion_pytorch_model_promax.safetensors",
|
154 |
+
)
|
155 |
+
state_dict = load_state_dict(model_file)
|
156 |
+
loaded_keys = list(state_dict.keys())
|
157 |
+
|
158 |
+
result = ControlNetModel_Union._load_pretrained_model(
|
159 |
+
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0", loaded_keys
|
160 |
+
)
|
161 |
+
|
162 |
+
model = result[0]
|
163 |
+
model = model.to(device=device, dtype=torch_dtype)
|
164 |
+
|
165 |
+
# VAE 로드
|
166 |
+
vae = AutoencoderKL.from_pretrained(
|
167 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
168 |
+
).to(device)
|
169 |
+
|
170 |
+
# 파이프라인 로드
|
171 |
+
OUTPAINT_PIPE = StableDiffusionXLFillPipeline.from_pretrained(
|
172 |
+
"SG161222/RealVisXL_V5.0_Lightning",
|
173 |
+
torch_dtype=torch_dtype,
|
174 |
+
vae=vae,
|
175 |
+
controlnet=model,
|
176 |
+
variant="fp16" if device.type == "cuda" else None,
|
177 |
+
).to(device)
|
178 |
+
|
179 |
+
OUTPAINT_PIPE.scheduler = TCDScheduler.from_config(OUTPAINT_PIPE.scheduler.config)
|
180 |
+
|
181 |
+
# MMAudio 모델 로드
|
182 |
+
logging.info("Loading MMAudio models...")
|
183 |
+
model_mmaudio: ModelConfig = all_model_cfg['large_44k_v2']
|
184 |
+
model_mmaudio.download_if_needed()
|
185 |
+
setup_eval_logging()
|
186 |
+
|
187 |
+
# 번역기 설정
|
188 |
+
try:
|
189 |
+
TRANSLATOR = pipeline("translation",
|
190 |
+
model="Helsinki-NLP/opus-mt-ko-en",
|
191 |
+
device="cpu",
|
192 |
+
use_fast=True,
|
193 |
+
trust_remote_code=False)
|
194 |
+
except Exception as e:
|
195 |
+
logging.warning(f"Failed to load translation model: {e}")
|
196 |
+
TRANSLATOR = None
|
197 |
+
|
198 |
+
# MMAudio 모델 초기화
|
199 |
+
if torch.cuda.is_available():
|
200 |
+
mmaudio_dtype = torch.bfloat16
|
201 |
+
else:
|
202 |
+
mmaudio_dtype = torch.float32
|
203 |
+
|
204 |
+
with torch.cuda.device(device):
|
205 |
+
MMAUDIO_SEQ_CFG = model_mmaudio.seq_cfg
|
206 |
+
MMAUDIO_NET = get_my_mmaudio(model_mmaudio.model_name).to(device, mmaudio_dtype).eval()
|
207 |
+
MMAUDIO_NET.load_weights(torch.load(model_mmaudio.model_path, map_location=device, weights_only=True))
|
208 |
+
logging.info(f'Loaded weights from {model_mmaudio.model_path}')
|
209 |
+
|
210 |
+
MMAUDIO_FEATURE_UTILS = FeaturesUtils(
|
211 |
+
tod_vae_ckpt=model_mmaudio.vae_path,
|
212 |
+
synchformer_ckpt=model_mmaudio.synchformer_ckpt,
|
213 |
+
enable_conditions=True,
|
214 |
+
mode=model_mmaudio.mode,
|
215 |
+
bigvgan_vocoder_ckpt=model_mmaudio.bigvgan_16k_path,
|
216 |
+
need_vae_encoder=False
|
217 |
+
).to(device, mmaudio_dtype).eval()
|
218 |
+
|
219 |
+
MODELS_LOADED = True
|
220 |
+
logging.info("All models loaded successfully!")
|
221 |
+
return True
|
222 |
+
|
223 |
+
except Exception as e:
|
224 |
+
logging.error(f"Failed to load models: {str(e)}")
|
225 |
+
return False
|
226 |
+
|
227 |
# 기존 함수들 모두 유지
|
228 |
def update_dimensions(preset):
|
229 |
if preset in IMAGE_PRESETS:
|
|
|
339 |
mask = Image.new('L', target_size, 255)
|
340 |
mask_draw = ImageDraw.Draw(mask)
|
341 |
|
342 |
+
# 마스크 영역 그리기
|
|
|
|
|
343 |
left_overlap = margin_x + overlap_x if alignment != "왼쪽" else margin_x
|
344 |
right_overlap = margin_x + new_width - overlap_x if alignment != "오른쪽" else margin_x + new_width
|
345 |
top_overlap = margin_y + overlap_y if alignment != "위" else margin_y
|
|
|
379 |
if image is None:
|
380 |
return None
|
381 |
|
382 |
+
# 모델 로드 확인
|
383 |
+
if not MODELS_LOADED:
|
384 |
+
load_models()
|
385 |
+
|
386 |
+
if OUTPAINT_PIPE is None:
|
387 |
return Image.new('RGB', (width, height), (200, 200, 200))
|
388 |
|
389 |
try:
|
|
|
400 |
final_prompt = f"{prompt}, high quality, 4k" if prompt else "high quality, 4k"
|
401 |
|
402 |
# GPU에서 실행
|
403 |
+
with torch.autocast(device_type=device.type, dtype=torch_dtype):
|
404 |
(
|
405 |
prompt_embeds,
|
406 |
negative_prompt_embeds,
|
407 |
pooled_prompt_embeds,
|
408 |
negative_pooled_prompt_embeds,
|
409 |
+
) = OUTPAINT_PIPE.encode_prompt(final_prompt, str(device), True)
|
410 |
|
411 |
# 생성 프로세스
|
412 |
+
for generated_image in OUTPAINT_PIPE(
|
413 |
prompt_embeds=prompt_embeds,
|
414 |
negative_prompt_embeds=negative_prompt_embeds,
|
415 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
|
436 |
# MMAudio 관련 함수들
|
437 |
def translate_prompt(text):
|
438 |
try:
|
439 |
+
if TRANSLATOR is None:
|
440 |
return text
|
441 |
|
442 |
if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text):
|
443 |
with torch.no_grad():
|
444 |
+
translation = TRANSLATOR(text)[0]['translation_text']
|
445 |
return translation
|
446 |
return text
|
447 |
except Exception as e:
|
|
|
452 |
@torch.inference_mode()
|
453 |
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
454 |
cfg_strength: float, duration: float):
|
455 |
+
# 모델 로드 확인
|
456 |
+
if not MODELS_LOADED:
|
457 |
+
load_models()
|
458 |
+
|
459 |
+
if MMAUDIO_NET is None:
|
460 |
return None
|
461 |
|
462 |
prompt = translate_prompt(prompt)
|
|
|
469 |
clip_frames, sync_frames, duration = load_video(video, duration)
|
470 |
clip_frames = clip_frames.unsqueeze(0)
|
471 |
sync_frames = sync_frames.unsqueeze(0)
|
472 |
+
MMAUDIO_SEQ_CFG.duration = duration
|
473 |
+
MMAUDIO_NET.update_seq_lengths(MMAUDIO_SEQ_CFG.latent_seq_len, MMAUDIO_SEQ_CFG.clip_seq_len, MMAUDIO_SEQ_CFG.sync_seq_len)
|
474 |
|
475 |
audios = generate(clip_frames,
|
476 |
sync_frames, [prompt],
|
477 |
negative_text=[negative_prompt],
|
478 |
+
feature_utils=MMAUDIO_FEATURE_UTILS,
|
479 |
+
net=MMAUDIO_NET,
|
480 |
fm=fm,
|
481 |
rng=rng,
|
482 |
cfg_strength=cfg_strength)
|
|
|
486 |
make_video(video,
|
487 |
video_save_path,
|
488 |
audio,
|
489 |
+
sampling_rate=MMAUDIO_SEQ_CFG.sampling_rate,
|
490 |
+
duration_sec=MMAUDIO_SEQ_CFG.duration)
|
491 |
return video_save_path
|
492 |
|
493 |
# 비디오 배경제거 관련 함수들
|
494 |
def process_bg_image(image, bg, fast_mode=False):
|
495 |
"""단일 이미지 배경 처리"""
|
496 |
+
if BIREFNET_MODEL is None or BIREFNET_LITE_MODEL is None:
|
497 |
return image
|
498 |
|
499 |
image_size = image.size
|
500 |
input_images = transform_image(image).unsqueeze(0).to(device)
|
501 |
+
model = BIREFNET_LITE_MODEL if fast_mode else BIREFNET_MODEL
|
502 |
|
503 |
with torch.no_grad():
|
504 |
preds = model(input_images)[-1].sigmoid().cpu()
|
|
|
541 |
def process_video_bg(vid, bg_type="색상", bg_image=None, bg_video=None, color="#00FF00",
|
542 |
fps=0, video_handling="slow_down", fast_mode=True, max_workers=10):
|
543 |
"""비디오 배경 처리 메인 함수"""
|
544 |
+
# 모델 로드 확인
|
545 |
+
if not MODELS_LOADED:
|
546 |
+
load_models()
|
547 |
+
|
548 |
+
if BIREFNET_MODEL is None:
|
549 |
yield gr.update(visible=False), gr.update(visible=True), "BiRefNet 모델을 로드하지 못했습니다."
|
550 |
yield None, None, "BiRefNet 모델을 로드하지 못했습니다."
|
551 |
return
|
|
|
714 |
logging.error(f"Video merge error: {str(e)}")
|
715 |
return None, f"❌ 오류 발생: {str(e)}"
|
716 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
717 |
# CSS
|
718 |
css = """
|
719 |
:root {
|
|
|
756 |
|
757 |
with demo:
|
758 |
gr.Markdown("# 🎨 Ginigen 스튜디오")
|
759 |
+
gr.Markdown("처음 사용 시 모델 로딩에 시간이 걸릴 수 있습니다. 잠시만 기다려주세요.")
|
760 |
+
|
761 |
+
# 모델 로드 상태 표시
|
762 |
+
model_status = gr.Textbox(label="모델 상태", value="모델 로딩 대기 중...", interactive=False)
|
763 |
|
764 |
with gr.Tabs() as tabs:
|
765 |
# 첫 번째 탭: 텍스트 to 이미지
|
|
|
905 |
gr.Markdown("### 🎵 오디오 생성 설정")
|
906 |
|
907 |
audio_prompt = gr.Textbox(
|
908 |
+
label="프롬프트 (한글 지원)",
|
909 |
placeholder="생성하고 싶은 오디오를 설명하세요... (예: 평화로운 피아노 음악)",
|
910 |
lines=3
|
911 |
)
|
|
|
936 |
label="오디오가 추가된 비디오",
|
937 |
interactive=False
|
938 |
)
|
|
|
|
|
|
|
939 |
|
940 |
# 네 번째 탭: 비디오 편집
|
941 |
with gr.Tab("비디오 편집", elem_classes="tabitem"):
|
|
|
1083 |
)
|
1084 |
|
1085 |
bg_remove_btn = gr.Button("🎬 배경 변경", variant="primary", elem_id="bg-remove-btn")
|
|
|
|
|
|
|
1086 |
|
1087 |
# 출력 컬럼
|
1088 |
with gr.Column(scale=1):
|
|
|
1103 |
긴 비디오는 작은 조각으로 나누어 처리하세요.
|
1104 |
""")
|
1105 |
|
1106 |
+
# 모델 로드 함수 실행
|
1107 |
+
def on_demo_load():
|
1108 |
+
try:
|
1109 |
+
if IS_SPACES:
|
1110 |
+
# Spaces 환경에서 GPU 워밍업
|
1111 |
+
gpu_warmup()
|
1112 |
+
# 모델 로드는 첫 번째 GPU 함수 호출 시 자동으로 수행됨
|
1113 |
+
return "모델 로딩 준비 완료"
|
1114 |
+
except Exception as e:
|
1115 |
+
return f"초기화 오류: {str(e)}"
|
1116 |
+
|
1117 |
# 이벤트 연결 - 첫 번째 탭
|
1118 |
size_preset.change(update_dimensions, [size_preset], [width, height])
|
1119 |
|
|
|
1181 |
fps_slider, video_handling_radio, fast_mode_checkbox, max_workers_slider],
|
1182 |
outputs=[stream_image, output_bg_video, time_textbox]
|
1183 |
)
|
1184 |
+
|
1185 |
+
# 데모 로드 시 실행
|
1186 |
+
demo.load(on_demo_load, outputs=model_status)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1187 |
|
1188 |
if __name__ == "__main__":
|
1189 |
+
# Spaces 환경에서 추가 체크
|
1190 |
if IS_SPACES:
|
1191 |
try:
|
1192 |
gpu_warmup()
|