Spaces:
Building
Building
File size: 3,740 Bytes
c9f9492 7fda6bb c9f9492 3b3890c e4aee44 e565e5a 08bac12 f5477de 08bac12 8ed001f e4aee44 3b3890c e4aee44 8ed001f 3b3890c c9f9492 e4aee44 c9f9492 e4aee44 974d749 c9f9492 e4aee44 c9f9492 3b3890c c9f9492 e4aee44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
from flask import Flask, render_template, Response, request, send_file
import io
import cv2
import numpy as np
import os
import requests # 상단에 추가
app = Flask(__name__, static_folder='static')
app.config['TITLE'] = 'Sign Language Translate'
nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()
def translate_korean_to_english(text):
try:
url = "https://translate.googleapis.com/translate_a/single"
params = {
"client": "gtx",
"sl": "ko",
"tl": "en",
"dt": "t",
"q": text
}
response = requests.get(url, params=params)
return response.json()[0][0][0]
except Exception as e:
print(f"Translation error: {e}")
return text
def generate_complete_video(gloss_list, dataset, list_2000_tokens):
frames = []
for frame in dg.generate_video(gloss_list, dataset, list_2000_tokens):
frame_data = frame.split(b'\r\n\r\n')[1]
nparr = np.frombuffer(frame_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
frames.append(img)
height, width = frames[0].shape[:2]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
temp_path = os.path.join('/tmp', 'temp.mp4')
out = cv2.VideoWriter(temp_path, fourcc, 25, (width, height))
for frame in frames:
out.write(frame)
out.release()
with open(temp_path, 'rb') as f:
video_bytes = f.read()
os.remove(temp_path)
return video_bytes
@app.route('/')
def index():
return render_template('index.html', title=app.config['TITLE'])
@app.route('/translate/', methods=['POST'])
def result():
if request.method == 'POST':
input_text = request.form['inputSentence']
try:
english_text = translate_korean_to_english(input_text)
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
generated_gloss = eng_to_asl_translator.translate_to_gloss()
gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
gloss_sentence_before_synonym = " ".join(gloss_list_lower)
gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens)
for gloss in gloss_list_lower]
gloss_sentence_after_synonym = " ".join(gloss_list)
return render_template('result.html',
title=app.config['TITLE'],
original_sentence=input_text,
english_translation=english_text,
gloss_sentence_before_synonym=gloss_sentence_before_synonym,
gloss_sentence_after_synonym=gloss_sentence_after_synonym)
except Exception as e:
return render_template('error.html', error=str(e))
@app.route('/video_feed')
def video_feed():
sentence = request.args.get('gloss_sentence_to_display', '')
gloss_list = sentence.split()
return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens),
mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/download_video/<gloss_sentence>')
def download_video(gloss_sentence):
gloss_list = gloss_sentence.split()
video_bytes = generate_complete_video(gloss_list, dataset, list_2000_tokens)
return send_file(
io.BytesIO(video_bytes),
mimetype='video/mp4',
as_attachment=True,
download_name='sign_language.mp4'
)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True) |