File size: 2,593 Bytes
c9f9492
7fda6bb
c9f9492
b329ae9
04952fd
 
c9f9492
b329ae9
04952fd
 
 
 
 
c9f9492
abc6394
 
 
8ed001f
04952fd
 
 
b329ae9
04952fd
8ed001f
c9f9492
 
04952fd
c9f9492
 
 
 
b329ae9
04952fd
 
 
 
 
 
 
 
 
 
 
142394e
04952fd
 
 
 
 
 
 
 
974d749
c9f9492
 
f8b7d96
7fda6bb
fab2e99
 
c9f9492
 
fab2e99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator 
from flask import Flask, render_template, Response, request
from transformers import pipeline
import torch

app = Flask(__name__)
app.config['TITLE'] = 'ASL Translator'

# Force CPU usage
device = torch.device('cpu')
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=device)

nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()

def translate_korean_to_english(text):
    # Check if input is Korean using Unicode range
    if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text):
        translation = translator(text)[0]['translation_text']
        return translation
    return text

@app.route('/')
def index():
    return render_template('index.html', title=app.config['TITLE'])

@app.route('/translate/', methods=['POST'])
def result():
    if request.method == 'POST':
        input_text = request.form['inputSentence']
        try:
            english_text = translate_korean_to_english(input_text)
            eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
            generated_gloss = eng_to_asl_translator.translate_to_gloss()
            
            gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
            gloss_sentence_before_synonym = " ".join(gloss_list_lower)
            
            gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) 
                         for gloss in gloss_list_lower]
            gloss_sentence_after_synonym = " ".join(gloss_list)
            
            return render_template('result.html',
                                title=app.config['TITLE'],
                                original_sentence=input_text,
                                english_translation=english_text,
                                gloss_sentence_before_synonym=gloss_sentence_before_synonym,
                                gloss_sentence_after_synonym=gloss_sentence_after_synonym)
        except Exception as e:
            return render_template('error.html', error=str(e))

@app.route('/video_feed')
def video_feed():
    sentence = request.args.get('gloss_sentence_to_display', '')
    gloss_list = sentence.split()
    return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), 
                   mimetype='multipart/x-mixed-replace; boundary=frame')

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5000, debug=True)