File size: 2,668 Bytes
c9f9492
7fda6bb
c9f9492
95810b4
 
c9f9492
08bac12
c9f9492
abc6394
 
 
08bac12
 
 
 
 
 
 
8ed001f
08bac12
 
 
 
 
 
 
 
 
8ed001f
c9f9492
 
04952fd
c9f9492
 
 
 
95810b4
04952fd
95810b4
 
04952fd
 
 
 
 
 
 
 
142394e
04952fd
 
95810b4
 
04952fd
 
 
 
974d749
c9f9492
 
f8b7d96
7fda6bb
fab2e99
 
c9f9492
 
95810b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator 
from flask import Flask, render_template, Response, request, jsonify
import requests



nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()

from googletrans import Translator

app = Flask(__name__, static_folder='static')
app.config['TITLE'] = 'Sign Language Translate'

translator = Translator()

def translate_korean_to_english(text):
    try:
        # 한글 감지
        if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text):
            translation = translator.translate(text, src='ko', dest='en')
            return translation.text
        return text
    except Exception as e:
        print(f"Translation error: {e}")
        return text

@app.route('/')
def index():
    return render_template('index.html', title=app.config['TITLE'])

@app.route('/translate/', methods=['POST'])
def result():
    if request.method == 'POST':
        korean_sentence = request.form['inputSentence']
        try:
            english_translation = translate_korean_to_english(korean_sentence)
            eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_translation)
            generated_gloss = eng_to_asl_translator.translate_to_gloss()
            
            gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
            gloss_sentence_before_synonym = " ".join(gloss_list_lower)
            
            gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) 
                         for gloss in gloss_list_lower]
            gloss_sentence_after_synonym = " ".join(gloss_list)
            
            return render_template('result.html',
                                title=app.config['TITLE'],
                                original_sentence=korean_sentence,
                                english_translation=english_translation,
                                gloss_sentence_before_synonym=gloss_sentence_before_synonym,
                                gloss_sentence_after_synonym=gloss_sentence_after_synonym)
        except Exception as e:
            return render_template('error.html', error=str(e))

@app.route('/video_feed')
def video_feed():
    sentence = request.args.get('gloss_sentence_to_display', '')
    gloss_list = sentence.split()
    return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), 
                   mimetype='multipart/x-mixed-replace; boundary=frame')

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5000, debug=True)