Spaces:
Building
Building
File size: 1,316 Bytes
c9f9492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import display_gloss as dg
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
from flask import Flask, render_template, Response, request
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/translate/', methods=['POST'])
def result():
if request.method == 'POST':
sentence = request.form['inputSentence']
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence)
generated_gloss = eng_to_asl_translator.translate_to_gloss()
gloss_list = generated_gloss.split()
print(gloss_list)
return render_template('translate.html', sentence=sentence, gloss_list=gloss_list)
@app.route('/video_feed')
def video_feed():
sentence = request.args.get('sentence', '')
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence)
generated_gloss = eng_to_asl_translator.translate_to_gloss()
gloss_list = [gloss.lower() for gloss in generated_gloss.split()]
print(f'video_feed gloss_list: {gloss_list}')
dataset, vocabulary_list = dg.load_data()
return Response(dg.generate_video(gloss_list, dataset, vocabulary_list), mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == "__main__":
app.debug = True
app.run(host="0.0.0.0", port=5000, debug=True)
|