File size: 4,405 Bytes
c9f9492
7fda6bb
c9f9492
3b3890c
 
 
 
e4aee44
d6f5800
08bac12
 
 
 
f5477de
 
08bac12
8ed001f
d6f5800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed001f
3b3890c
d6f5800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3890c
c9f9492
 
d6f5800
c9f9492
 
 
d6f5800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
974d749
c9f9492
 
d6f5800
 
 
 
c9f9492
3b3890c
 
d6f5800
 
 
 
 
 
 
 
3b3890c
c9f9492
d6f5800
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator 
from flask import Flask, render_template, Response, request, send_file
import io
import cv2
import numpy as np
import os
import requests

app = Flask(__name__, static_folder='static')
app.config['TITLE'] = 'Sign Language Translate'

nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()

def translate_korean_to_english(text):
    try:
        url = "https://translate.googleapis.com/translate_a/single"
        params = {
            "client": "gtx", 
            "sl": "ko",
            "tl": "en",
            "dt": "t",
            "q": text.strip()  # 입력 텍스트의 앞뒤 공백 제거
        }
        response = requests.get(url, params=params)
        if response.status_code == 200:
            # 전체 번역 결과를 하나의 문자열로 결합
            translated_text = ' '.join(item[0] for item in response.json()[0] if item[0])
            return translated_text
        else:
            raise Exception(f"Translation API returned status code: {response.status_code}")
    except Exception as e:
        print(f"Translation error: {e}")
        return text

def generate_complete_video(gloss_list, dataset, list_2000_tokens):
    frames = []
    for frame in dg.generate_video(gloss_list, dataset, list_2000_tokens):
        frame_data = frame.split(b'\r\n\r\n')[1]
        nparr = np.frombuffer(frame_data, np.uint8)
        img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
        frames.append(img)
    
    height, width = frames[0].shape[:2]
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    temp_path = os.path.join('/tmp', 'temp.mp4')
    out = cv2.VideoWriter(temp_path, fourcc, 25, (width, height))
    
    for frame in frames:
        out.write(frame)
    out.release()
    
    with open(temp_path, 'rb') as f:
        video_bytes = f.read()
    
    os.remove(temp_path)
    return video_bytes

@app.route('/')
def index():
    return render_template('index.html', title=app.config['TITLE'])

@app.route('/translate/', methods=['POST'])
def result():
    if request.method == 'POST':
        input_text = request.form['inputSentence'].strip()
        if not input_text:
            return render_template('error.html', error="Please enter text to translate")
        
        try:
            english_text = translate_korean_to_english(input_text)
            if not english_text:
                raise Exception("Translation failed")
                
            eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
            generated_gloss = eng_to_asl_translator.translate_to_gloss()
            
            gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
            gloss_sentence_before_synonym = " ".join(gloss_list_lower)
            
            gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) 
                         for gloss in gloss_list_lower]
            gloss_sentence_after_synonym = " ".join(gloss_list)
            
            return render_template('result.html',
                                title=app.config['TITLE'],
                                original_sentence=input_text,
                                english_translation=english_text,
                                gloss_sentence_before_synonym=gloss_sentence_before_synonym,
                                gloss_sentence_after_synonym=gloss_sentence_after_synonym)
        except Exception as e:
            return render_template('error.html', error=f"Translation error: {str(e)}")

@app.route('/video_feed')
def video_feed():
    sentence = request.args.get('gloss_sentence_to_display', '')
    gloss_list = sentence.split()
    return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), 
                   mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/download_video/<gloss_sentence>')
def download_video(gloss_sentence):
    gloss_list = gloss_sentence.split()
    video_bytes = generate_complete_video(gloss_list, dataset, list_2000_tokens)
    return send_file(
        io.BytesIO(video_bytes),
        mimetype='video/mp4',
        as_attachment=True,
        download_name='sign_language.mp4'
    )

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=True)