Spaces:
Building
Building
import display_gloss as dg | |
import synonyms_preprocess as sp | |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator | |
from flask import Flask, render_template, Response, request | |
from transformers import pipeline | |
import torch | |
app = Flask(__name__) | |
app.config['TITLE'] = 'ASL Translator' | |
# Force CPU usage | |
device = torch.device('cpu') | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=device) | |
nlp, dict_docs_spacy = sp.load_spacy_values() | |
dataset, list_2000_tokens = dg.load_data() | |
def translate_korean_to_english(text): | |
# Check if input is Korean using Unicode range | |
if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text): | |
translation = translator(text)[0]['translation_text'] | |
return translation | |
return text | |
def index(): | |
return render_template('index.html', title=app.config['TITLE']) | |
def result(): | |
if request.method == 'POST': | |
input_text = request.form['inputSentence'] | |
try: | |
english_text = translate_korean_to_english(input_text) | |
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text) | |
generated_gloss = eng_to_asl_translator.translate_to_gloss() | |
gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()] | |
gloss_sentence_before_synonym = " ".join(gloss_list_lower) | |
gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) | |
for gloss in gloss_list_lower] | |
gloss_sentence_after_synonym = " ".join(gloss_list) | |
return render_template('result.html', | |
title=app.config['TITLE'], | |
original_sentence=input_text, | |
english_translation=english_text, | |
gloss_sentence_before_synonym=gloss_sentence_before_synonym, | |
gloss_sentence_after_synonym=gloss_sentence_after_synonym) | |
except Exception as e: | |
return render_template('error.html', error=str(e)) | |
def video_feed(): | |
sentence = request.args.get('gloss_sentence_to_display', '') | |
gloss_list = sentence.split() | |
return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), | |
mimetype='multipart/x-mixed-replace; boundary=frame') | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=5000, debug=True) |